scholarly journals A Novel Parent Centric Crossover with the Log-Logistic Probabilistic Approach Using Multimodal Test Problems for Real-Coded Genetic Algorithms

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Ehtasham ul Haq ◽  
Ishfaq Ahmad ◽  
Ibrahim M. Almanjahie

In this paper, a comprehensive empirical study is conducted to evaluate the performance of a new real-coded crossover operator called Fisk crossover (FX) operator. The basic aim of the proposed study is to preserve population diversity as well as to avoid local optima. In this context, a new crossover operator is designed and developed which is linked with Log-logistic probability distribution. For its global performance, a realistic comparison is made between FX versus double Pareto crossover (DPX), Laplace crossover (LX), and simulated binary crossover (SBX) operators. Moreover, these crossover operators are also used in conjunction with three mutation operators called power mutation (PM), Makinen, Periaux, and Toivanen mutation (MPTM), and nonuniform mutation (NUM) for inclusive evaluation. The performance of probabilistic-based algorithms is tested on a set of twenty-one well-known nonlinear optimization benchmark functions with diverse features. The empirical results show a substantial dominance of FX over other crossover operators with authentication of performance index (PI). Moreover, we also examined the significance of the proposed crossover scheme by administrating ANOVA and Gabriel pairwise multiple comparison test. Finally, the statistically significant results of the proposed crossover scheme have a definite edge over the other schemes, and it is also expected that FX has a great potential to solve complex optimization problems.

2012 ◽  
Vol 3 (4) ◽  
pp. 19-33 ◽  
Author(s):  
Harish Sharma ◽  
Jagdish Chand Bansal ◽  
K. V. Arya ◽  
Kusum Deep

Artificial Bee Colony (ABC) optimization algorithm is relatively a simple and recent population based probabilistic approach for global optimization. ABC has been outperformed over some Nature Inspired Algorithms (NIAs) when tested over test problems as well as real world optimization problems. This paper presents an attempt to modify ABC to make it less susceptible to stick at local optima and computationally efficient. In the case of local convergence, addition of some external potential solutions may help the swarm to get out of the local valley and if the algorithm is taking too much time to converge then deletion of some swarm members may help to speed up the convergence. Therefore, in this paper a dynamic swarm size strategy in ABC is proposed. The proposed strategy is named as Dynamic Swarm Artificial Bee Colony algorithm (DSABC). To show the performance of DSABC, it is tested over 16 global optimization problems of different complexities and a popular real world optimization problem namely Lennard-Jones potential energy minimization problem. The simulation results show that the proposed strategies outperformed than the basic ABC and three recent variants of ABC, namely, the Gbest-Guided ABC, Best-So-Far ABC and Modified ABC.


2022 ◽  
Vol 19 (1) ◽  
pp. 473-512
Author(s):  
Rong Zheng ◽  
◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
...  

<abstract> <p>Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (<italic>RMOP</italic>) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.</p> </abstract>


Author(s):  
Xiaohui Yuan ◽  
Zhihuan Chen ◽  
Yanbin Yuan ◽  
Yuehua Huang ◽  
Xiaopan Zhang

A novel strength Pareto gravitational search algorithm (SPGSA) is proposed to solve multi-objective optimization problems. This SPGSA algorithm utilizes the strength Pareto concept to assign the fitness values for agents and uses a fine-grained elitism selection mechanism to keep the population diversity. Furthermore, the recombination operators are modeled in this approach to decrease the possibility of trapping in local optima. Experiments are conducted on a series of benchmark problems that are characterized by difficulties in local optimality, nonuniformity, and nonconvexity. The results show that the proposed SPGSA algorithm performs better in comparison with other related works. On the other hand, the effectiveness of two subtle means added to the GSA are verified, i.e. the fine-grained elitism selection and the use of SBX and PMO operators. Simulation results show that these measures not only improve the convergence ability of original GSA, but also preserve the population diversity adequately, which enables the SPGSA algorithm to have an excellent ability that keeps a desirable balance between the exploitation and exploration so as to accelerate the convergence speed to the true Pareto-optimal front.


Author(s):  
Adel A. Younis ◽  
George H. Cheng ◽  
G. Gary Wang ◽  
Zuomin Dong

Metamodel based design optimization (MBDO) algorithms have attracted considerable interests in recent years due to their special capability in dealing with complex optimization problems with computationally expensive objective and constraint functions and local optima. Conventional unimodal-based optimization algorithms and stochastic global optimization algorithms either miss the global optimum frequently or require unacceptable computation time. In this work, a generic testbed/platform for evaluating various MBDO algorithms has been introduced. The purpose of the platform is to facilitate quantitative comparison of different MBDO algorithms using standard test problems, test procedures, and test outputs, as well as to improve the efficiency of new algorithm testing and improvement. The platform consists of a comprehensive test function database that contains about 100 benchmark functions and engineering problems. The testbed accepts any optimization algorithm to be tested, and only requires minor modifications to meet the test-bed requirements. The testbed is useful in comparing the performance of competing algorithms through execution of same problems. It allows researchers and practitioners to test and choose the most suitable optimization tool for their specific needs. It also helps to increase confidence and reliability of the newly developed MBDO tools. Many new MBDO algorithms, including Mode Pursuing Sampling (MPS), Pareto Set Pursuing (PSP), and Space Exploration and Unimodal Region Elimination (SEUMRE), were tested in this work to demonstrate its functionality and benefits.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1637
Author(s):  
Mohammad H. Nadimi-Shahraki ◽  
Ali Fatahi ◽  
Hoda Zamani ◽  
Seyedali Mirjalili ◽  
Laith Abualigah

Moth-flame optimization (MFO) algorithm inspired by the transverse orientation of moths toward the light source is an effective approach to solve global optimization problems. However, the MFO algorithm suffers from issues such as premature convergence, low population diversity, local optima entrapment, and imbalance between exploration and exploitation. In this study, therefore, an improved moth-flame optimization (I-MFO) algorithm is proposed to cope with canonical MFO’s issues by locating trapped moths in local optimum via defining memory for each moth. The trapped moths tend to escape from the local optima by taking advantage of the adapted wandering around search (AWAS) strategy. The efficiency of the proposed I-MFO is evaluated by CEC 2018 benchmark functions and compared against other well-known metaheuristic algorithms. Moreover, the obtained results are statistically analyzed by the Friedman test on 30, 50, and 100 dimensions. Finally, the ability of the I-MFO algorithm to find the best optimal solutions for mechanical engineering problems is evaluated with three problems from the latest test-suite CEC 2020. The experimental and statistical results demonstrate that the proposed I-MFO is significantly superior to the contender algorithms and it successfully upgrades the shortcomings of the canonical MFO.


2018 ◽  
Vol 35 (4) ◽  
pp. 1805-1828 ◽  
Author(s):  
Kimia Bazargan Lari ◽  
Ali Hamzeh

Purpose Recently, many-objective optimization evolutionary algorithms have been the main issue for researchers in the multi-objective optimization community. To deal with many-objective problems (typically for four or more objectives) some modern frameworks are proposed which have the potential of achieving the finest non-dominated solutions in many-objective spaces. The effectiveness of these algorithms deteriorates greatly as the problem’s dimension increases. Diversity reduction in the objective space is the main reason of this phenomenon. Design/methodology/approach To properly deal with this undesirable situation, this work introduces an indicator-based evolutionary framework that can preserve the population diversity by producing a set of discriminated solutions in high-dimensional objective space. This work attempts to diversify the objective space by proposing a fitness function capable of discriminating the chromosomes in high-dimensional space. The numerical results prove the potential of the proposed method, which had superior performance in most of test problems in comparison with state-of-the-art algorithms. Findings The achieved numerical results empirically prove the superiority of the proposed method to state-of-the-art counterparts in the most test problems of a known artificial benchmark. Originality/value This paper provides a new interpretation and important insights into the many-objective optimization realm by emphasizing on preserving the population diversity.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Qingfeng Ding ◽  
Guoxin Zheng

To avoid immature convergence and tune the selection pressure in the differential evolution (DE) algorithm, a new differential evolution algorithm based on cellular automata and chaotic local search (CLS) or ccDE is proposed. To balance the exploration and exploitation tradeoff of differential evolution, the interaction among individuals is limited in cellular neighbors instead of controlling parameters in the canonical DE. To improve the optimizing performance of DE, the CLS helps by exploring a large region to avoid immature convergence in the early evolutionary stage and exploiting a small region to refine the final solutions in the later evolutionary stage. What is more, to improve the convergence characteristics and maintain the population diversity, the binomial crossover operator in the canonical DE may be instead by the orthogonal crossover operator without crossover rate. The performance of ccDE is widely evaluated on a set of 14 bound constrained numerical optimization problems compared with the canonical DE and several DE variants. The simulation results show that ccDE has better performances in terms of convergence rate and solution accuracy than other optimizers.


Author(s):  
Kedar Nath Das

Real coded Genetic Algorithms (GAs) are the most effective and popular techniques for solving continuous optimization problems. In the recent past, researchers used the Laplace Crossover (LX) and Power Mutation (PM) in the GA cycle (namely LX-PM) efficiently for solving both constrained and unconstrained optimization problems. In this chapter, a local search technique, namely Quadratic Approximation (QA) is discussed. QA is hybridized with LX-PM in order to improve its efficiency and efficacy. The generated hybrid system is named H-LX-PM. The supremacy of H-LX-PM over LX-PM is validated through a test bed of 22 unconstrained and 15 constrained typical benchmark problems. In the later part of this chapter, a few applications of GA in networking optimization are highlighted as the scope for future research.


2019 ◽  
Vol 11 (3) ◽  
pp. 1-11
Author(s):  
Omar Andres Carmona Cortes ◽  
Josenildo Costa da Silva

Unconstrained numerical problems are common in solving practical applications that, due to its nature, are usually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them. An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. In this context, this work is a tutorial on using real-coded genetic algorithms for solving unconstrained numerical optimization problems. We present the theory and the implementation in R language. Five benchmarks functions (Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four different crossover operators (simple, arithmetical, non-uniform arithmetical, and Linear), two selection mechanisms (roulette wheel and tournament), and two mutation operators (uniform and non-uniform) are shown. Results indicate that non-uniform mutation and tournament selection tend to present better outcomes.


Sign in / Sign up

Export Citation Format

Share Document