scholarly journals Stochastic Stabilization of Malware Propagation in Wireless Sensor Network via Aperiodically Intermittent White Noise

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaojing Zhong ◽  
Baihao Peng ◽  
Feiqi Deng ◽  
Guiyun Liu

In this paper, we propose a novel heterogeneous model to describe the propagation dynamics of malware (viruses, worms, Trojan horses, etc.) in wireless sensor networks. Our model takes into consideration different battery-level sensor nodes contrary to existing models. In order to control the spread of malware, we design an aperiodically intermittent controller driven by white noise, which has striking advantages of lower cost and more flexible control strategy. We give a distinct condition on stability in probability one using graph-theoretical Lyapunov function and stochastic analysis method. Our results show that the nonlinear malware propagation system can be stabilized by intermittent stochastic perturbation under the intermittent time related to stochastic perturbation intensity. Our theoretical results can be applied to understand the observed mechanisms of malware and design interventions to control the spread of malware. Numerical simulations illustrate our analytical results clearly.

Author(s):  
Sanjeev Ghosh ◽  
Srija Unnikrishnan

Technological advancements in low power integrated circuits and wireless communications have led to the feasibility of using a network of sensors to be used for the collection, processing, analysis, and distribution of important information, collected in a wide variety of environments. Sensor nodes in a wireless sensor network face the issue of scarcity of power and therefore, optimal use of available power is of prime importance. The authors study and analyze a technique that aims to reduce the consumption of power. In this technique the radio of the sensor node is switched on only when the number of packets in a queue exceeds a certain threshold; this however introduces delay in the processing of the packets. The authors analyze the performance of this system with respect to the power consumption and mean waiting time and suggest a way to mitigate the delay. The simulations performed show that the simulation results are close to the theoretical results thus indicating the validity of the technique studied.


2021 ◽  
Vol 7 ◽  
pp. e728
Author(s):  
Xuejin Zhu ◽  
Jie Huang

Due to limited resources, wireless sensor network (WSN) nodes generally possess weak defense capabilities and are often the target of malware attacks. Attackers can capture or infect specific sensor nodes and propagate malware to other sensor nodes in WSNs through node communication. This can eventually infect an entire network system and even cause paralysis. Based on epidemiological theory, the present study proposes a malware propagation model suitable for cluster-based WSNs to analyze the propagation dynamic of malware. The model focuses on the data-transmission characteristics between different nodes in a cluster-based network and considers the actual application parameters of WSNs, such as node communication radius, node distributed density, and node death rate. In addition, an attack and defense game between malware and defending systems is also established, and the infection and recovery rates of malware propagation under the mixed strategy Nash equilibrium condition are given. In particular, the basic reproductive number, equilibrium point, and stability of the model are derived. These studies revealed that a basic reproductive number of less than 1 leads to eventual disappearance of malware, which provides significant insight into the design of defense strategies against malware threats. Numerical experiments were conducted to validate the theory proposed, and the influence of WSN parameters on malware propagation was examined.


Malware (worm, virus, malicious signals, etc.) propagation in Wireless Sensor Network (WSN) is one of the important concern. The WSN becomes unstable due to presence of malicious signals. Vulnerability of WSN is very high because of the structural constraint of sensor nodes. The attackers target a sensor node of WSN for malware attack. A single infected node starts to spread the malware in the entire network through neighbouring nodes. Therefore, for controlling of malware propagation in WSN a mathematical model is developed. The developed model is based on epidemic theory. The developed model consist of five states such as Susceptible-Infectious-Quarantine-Vaccination-Dead (SIQVD). The quarantine is a method through which to cease the infection spread in WSN. And through vaccination eliminate the malware from the network. The combination of quarantine and vaccination technique improves the network stability. This technique prevents malware propagation in WSN. The basic reproduction number ( ) of the model is deduced. The stability of the network depends on the value of basic reproduction number. It is found that if the value of is less than one the network system exist in malware-fee state, otherwise in endemic state. The equilibrium points of the system is obtained. The effects of quarantine and vaccination has been analyzed on system performance. The theoretical findings are verified by simulation results. Attack Epidemic model Equilibrium point Malware propagation Security Wireless Sensor Network


Author(s):  
Shashank Awasthi ◽  
◽  
Naresh Kumar ◽  
Pramod Kumar Srivastava ◽  
Rudra Pratap Ojha ◽  
...  

Wireless sensor network (WSN) is a decentralized network system which consists of sensor nodes, and these nodes are connected through wireless link. Due to decentralized network system and resource constraint WSN faces security threat. Malware (malicious signals, worm, Trajan horse, virus etc.) attacks on the sensor node of WSN and make them paralyze and steal information from the network. Malware attack also increases the energy consumption of Sensor nodes of WSN. It just begins to spread from an infected node, and spread across the entire WSN with the help of neighboring nodes. Therefore, security of WSN against attack of malware is an inescapable need. On the basis of earlier works and consideration of charging mechanism of sensor nodes, and considering the effect of coverage and connectivity, proposed a SILRD (Susceptible - Infectious – Low Energy – Recovered –Dead) model with vital dynamics. The propose model investigates the dynamics of malware propagation in WSN and also explain sensor node’s energy consumption. The system’s stability has analyzed in terms of local and global of malware-free and endemic equilibrium. For the investigation of system dynamics, the expression of basic reproduction number has computed, which is also utilized to analyze state of malware in WSN. The effect of charging, coverage and connectivity is explained in this paper.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2014 ◽  
Vol 8 (1) ◽  
pp. 668-674
Author(s):  
Junguo Zhang ◽  
Yutong Lei ◽  
Fantao Lin ◽  
Chen Chen

Wireless sensor networks composed of camera enabled source nodes can provide visual information of an area of interest, potentially enriching monitoring applications. The node deployment is one of the key issues in the application of wireless sensor networks. In this paper, we take the effective coverage and connectivity as the evaluation indices to analyze the effect of the perceivable angle and the ratio of communication radius and sensing radius for the deterministic circular deployment. Experimental results demonstrate that the effective coverage area of the triangle deployment is the largest when using the same number of nodes. When the nodes are deployed in the same monitoring area in the premise of ensuring connectivity, rhombus deployment is optimal when √2 < rc / rs < √3 . The research results of this paper provide an important reference for the deployment of the image sensor networks with the given parameters.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


Sign in / Sign up

Export Citation Format

Share Document