scholarly journals A Branch-and-Price-and-Cut Algorithm for the Integrated Scheduling and Rostering Problem of Bus Drivers

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Dung-Ying Lin ◽  
Chieh-Ju Juan ◽  
Ching-Chih Chang

In the transportation industry, crew management is typically decomposed into two phases: crew scheduling and crew rostering. Due to the complexity of scheduling and rostering, bus transportation is not an exception and many relevant studies do not consider both procedures simultaneously. However, such a decomposition can yield inferior schedules/rosters. To address this issue, this paper proposes an integrated scheduling and rostering model for bus drivers and devises a branch-and-price-and-cut (BPC) algorithm to solve the complex problem. The proposed solution framework is empirically applied to real-world instances with various problem sizes whose data is collected from H Bus Company located in southern Taiwan. To validate the effectiveness and evaluate the efficiency of the proposed solution framework, this paper compares the solution obtained from the BPC algorithm with that of a benchmark optimization package. The results show that the proposed BPC algorithm can solve problems with large real-world instances within a reasonable computational time. Moreover, in the numerical experiments, this paper finds that the scheduling and rostering results of the bus drivers are more sensitive to the rostering constraints. Also, the proposed integrated framework can yield a better solution than the solution from a conventional two-phase approach, which demonstrates the advantage of the integration in this paper. The proposed method provided can be employed to deal with the challenges in driver planning for bus companies.

2015 ◽  
Vol 22 (1) ◽  
pp. 109-116 ◽  
Author(s):  
S. Guo ◽  
P. Xu ◽  
Z. Zheng ◽  
Y. Gao

Abstract. The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate the velocity for a debris flow.


Author(s):  
Kaushik Saha ◽  
Xianguo Li

Several recent cavitation models for the analysis of two-phase flows in diesel injectors with single- and two-fluid modeling approaches have been evaluated, including the Saha–Abu-Ramandan–Li (SAL), Schnerr–Sauer (SS), and Zwart–Gerber–Belamri (ZGB) models. The SAL model is a single-fluid model, while the other two models have been implemented with both single- and two-fluid approaches. Numerical predictions are compared with experimental results available in literature, qualitatively with experimental images of two-phase flow in an optically accessible nozzle, and quantitatively with measured mass flow rates and velocity profiles. It is found that at low injection pressure differentials there can be considerable discrepancy in the predictions of the vapor distribution from the three models considered. This discrepancy is reduced as the injection pressure differential is increased. Implementation of the SS and ZGB models with single- and two- fluid approaches yields noticeable differences in the results because of the relative velocity between the two phases, with two-fluid approach providing better agreement with experimental results. The performance of the SS and ZGB models implemented with the two-fluid approach is comparable with the SAL single-fluid model, but with significantly more computational time. Overall, the SAL single-fluid model performs comparatively better with respect to the other two models.


Author(s):  
Alina Bogoi ◽  
Jean Marie Seynhaeve ◽  
Radu D. Rugescu ◽  
Oliviu Sugar ◽  
Michel Giot

A genuine mathematical model for one dimensional, unsteady, two phase (liquid-gas) flows is presented that intends to solve the complex problem of two phase behavior of fluids. The mechanism of the model describes the fluid flow characteristics of the mixture, supposing that the conditions for homogeneous vaporization are fulfilled and the condensate fraction of the composite fluid keeps constant. In particular, the equation of momentum conservation for the gas phase is derived from the Voinov equation. For its domain of validity (bubbly flows), the model is of hyperbolic type and can be written in the conservative form. The numerical results obtained for the water hammer phenomena show that the present work is able to supply accurate results, at least of the same degree of confidence as the results provided by an ordinary, commercial CFD code, still with a considerable reduction in computational time.


2014 ◽  
Vol 1 (1) ◽  
pp. 999-1021
Author(s):  
S. Guo ◽  
P. Xu ◽  
Z. Zheng ◽  
Y. Gao

Abstract. The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate accurately the velocity for a debris flow.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-73
Author(s):  
David J. Pearce

Rust is a relatively new programming language that has gained significant traction since its v1.0 release in 2015. Rust aims to be a systems language that competes with C/C++. A claimed advantage of Rust is a strong focus on memory safety without garbage collection. This is primarily achieved through two concepts, namely, reference lifetimes and borrowing . Both of these are well-known ideas stemming from the literature on region-based memory management and linearity / uniqueness . Rust brings both of these ideas together to form a coherent programming model. Furthermore, Rust has a strong focus on stack-allocated data and, like C/C++ but unlike Java, permits references to local variables. Type checking in Rust can be viewed as a two-phase process: First, a traditional type checker operates in a flow-insensitive fashion; second, a borrow checker enforces an ownership invariant using a flow-sensitive analysis. In this article, we present a lightweight formalism that captures these two phases using a flow-sensitive type system that enforces “ type and borrow safety .” In particular, programs that are type and borrow safe will not attempt to dereference dangling pointers. Our calculus core captures many aspects of Rust, including copy- and move-semantics, mutable borrowing, reborrowing, partial moves, and lifetimes. In particular, it remains sufficiently lightweight to be easily digested and understood and, we argue, still captures the salient aspects of reference lifetimes and borrowing. Furthermore, extensions to the core can easily add more complex features (e.g., control-flow, tuples, method invocation). We provide a soundness proof to verify our key claims of the calculus. We also provide a reference implementation in Java with which we have model checked our calculus using over 500B input programs. We have also fuzz tested the Rust compiler using our calculus against 2B programs and, to date, found one confirmed compiler bug and several other possible issues.


Author(s):  
Vishu Madaan ◽  
Aditya Roy ◽  
Charu Gupta ◽  
Prateek Agrawal ◽  
Anand Sharma ◽  
...  

AbstractCOVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people got infected worldwide with more than 22 million active patients as of 5 December 2020 and the rate is accelerating. More than 1.5 million patients (approximately 2.5% of total reported cases) across the world lost their life. In many places, the COVID-19 detection takes place through reverse transcription polymerase chain reaction (RT-PCR) tests which may take longer than 48 h. This is one major reason of its severity and rapid spread. We propose in this paper a two-phase X-ray image classification called XCOVNet for early COVID-19 detection using convolutional neural Networks model. XCOVNet detects COVID-19 infections in chest X-ray patient images in two phases. The first phase pre-processes a dataset of 392 chest X-ray images of which half are COVID-19 positive and half are negative. The second phase trains and tunes the neural network model to achieve a 98.44% accuracy in patient classification.


2007 ◽  
Vol 129 (11) ◽  
pp. 1415-1421 ◽  
Author(s):  
Joseph Borowsky ◽  
Timothy Wei

An experimental investigation of a two-phase pipe flow was undertaken to study kinematic and dynamic parameters of the fluid and solid phases. To accomplish this, a two-color digital particle image velocimetry and accelerometry (DPIV∕DPIA) methodology was used to measure velocity and acceleration fields of the fluid phase and solid phase simultaneously. The simultaneous, two-color DPIV∕DPIA measurements provided information on the changing characteristics of two-phase flow kinematic and dynamic quantities. Analysis of kinematic terms indicated that turbulence was suppressed due to the presence of the solid phase. Dynamic considerations focused on the second and third central moments of temporal acceleration for both phases. For the condition studied, the distribution across the tube of the second central moment of acceleration indicated a higher value for the solid phase than the fluid phase; both phases had increased values near the wall. The third central moment statistic of acceleration showed a variation between the two phases with the fluid phase having an oscillatory-type profile across the tube and the solid phase having a fairly flat profile. The differences in second and third central moment profiles between the two phases are attributed to the inertia of each particle type and its response to turbulence structures. Analysis of acceleration statistics provides another approach to characterize flow fields and gives some insight into the flow structures, even for steady flows.


1993 ◽  
Vol 115 (4) ◽  
pp. 781-783 ◽  
Author(s):  
Kiyoshi Minemura ◽  
Tomomi Uchiyama

This paper is concerned with the determination of the performance change in centrifugal pumps operating under two-phase flow conditions using the velocities and void fractions calculated under the assumption of an inviscid bubbly flow with slippage between the two phases. The estimated changes in the theoretical head are confirmed with experiments within the range of bubbly flow regime.


1981 ◽  
Vol 59 (1) ◽  
pp. 127-131 ◽  
Author(s):  
Alan N. Campbell

The properties named in the title have been determined by standard methods. Viscosity, molar volume, and orientation polarisation all indicate abnormalities of the nature of association between the components.The most interesting result is that of surface tension which indicates that, in the case of the binary system triethylamine–water, a surface layer of constant composition is formed over a wide range of total composition. When, by a rise in temperature of two or three degrees, this layer becomes unstable, it splits into two phases of different composition. The surface layer may then be instantaneously reformed and so on. A mechanism for the generation of a two-phase system is thus established. The data for the three-phase, isothermal, system are not so convincing, for reasons that are suggested.


1993 ◽  
Vol 8 (5) ◽  
pp. 957-961 ◽  
Author(s):  
J.C. Abele ◽  
R.L. Bristol ◽  
T.C. Nguyen ◽  
M.W. Ohmer ◽  
L.S. Wood

A model proposed by Tinkham1to explain the resistance versus temperature broadening found in highTcsuperconductors in applied magnetic fields is extended to “foot and knee”-structured data taken on polycrystalline YBa2Cu3O6+δ. The proposed extension involves a series combination of two types of superconductors. For this series combination to result, a critical ratio of the two types of superconductors must be met—a result common to both percolation and randomized cellular autonoma theory. This critical ratio is investigated via statistical computer models of a polycrystalline superconductor having two phases of crystallites—one with substantially lowerJcthan the other.


Sign in / Sign up

Export Citation Format

Share Document