scholarly journals A Five-Gene Signature for Recurrence Prediction of Hepatocellular Carcinoma Patients

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zeyu Wang ◽  
Ningning Zhang ◽  
Jiayu Lv ◽  
Cuihua Ma ◽  
Jie Gu ◽  
...  

Background. Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies with poor prognosis. There are many selectable treatments with good prognosis in Barcelona Clinic Liver Cancer- (BCLC-) 0, A, and B HCC patients, but the most crucial factor affecting survival is the high recurrence rate after treatments. Therefore, it is of great significance to predict the recurrence of BCLC-0, BCLC-A, and BCLC-B HCC patients. Aim. To develop a gene signature to enhance the prediction of recurrence among HCC patients. Materials and Methods. The RNA expression data and clinical data of HCC patients were obtained from the Gene Expression Omnibus (GEO) database. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to screen primarily prognostic biomarkers in GSE14520. Multivariate Cox regression analysis was introduced to verify the prognostic role of these genes. Ultimately, 5 genes were demonstrated to be related with the recurrence of HCC patients and a gene signature was established. GSE76427 was adopted to further verify the accuracy of gene signature. Subsequently, a nomogram based on gene signature was performed to predict recurrence. Gene functional enrichment analysis was conducted to investigate the potential biological processes and pathways. Results. We identified a five-gene signature which performs a powerful predictive ability in HCC patients. In the training set of GSE14520, area under the curve (AUC) for the five-gene predictive signature of 1, 2, and 3 years were 0.813, 0.786, and 0.766. Then, the relative operating characteristic (ROC) curves of five-gene predictive signature were verified in the GSE14520 validation set, the whole GSE14520, and GSE76427, showed good performance. A nomogram comprising the five-gene signature was built so as to show a good accuracy for predicting recurrence-free survival of HCC patients. Conclusion. The novel five-gene signature showed potential feasibility of recurrence prediction for early-stage HCC.

2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2020 ◽  
Author(s):  
Zaoqu Liu ◽  
Dechao Jiao ◽  
Xueliang Zhou ◽  
Yuan Yao ◽  
Zhaonan Li ◽  
...  

Abstract Background: A growing amount of evidence has suggested immune-related genes (IRGs) play a key role in the development of hepatocellular carcinoma (HCC). However, there have been no investigations proposing a reliable prognostic signature in terms of tumor immunology. This study aimed to develop a robust signature based on IRGs in HCC.Methods: A total of 597 HCC patients were enrolled. The TCGA database was utilized for discovery, and the ICGC database was utilized for validation. Multiple algorithms (including univariate Cox, LASSO, and multivariate Cox regression) were performed to identify key prognostic IRGs and establish an immune-related risk signature. Bioinformatics analysis and R soft tools were utilized to annotate underlying biological functions. Results: A total of 1416 differentially expressed mRNAs (DEMs) were screened in the TCGA cohort, of which 90 were differentially expressed IRGs (DEIRGs). Using univariate Cox regression analysis, we identified 33 prognostically relevant DEIRGs. Using LASSO regression and multivariate Cox regression analysis, we extracted 8 optimal DEIRGs (APLN, CDK4, CXCL2, ESR1, IL1RN, PSMD2, SEMA3F, and SPP1) to construct a risk signature with the ability to distinguish cases as having a high or low risk of unfavorable prognosis in the TCGA cohort, and the signature was verified in the ICGC cohort. The signature was prognostically significant in all stratified cohorts and was deemed an independent prognostic factor for HCC. We also built a nomogram with good performance by combining the signature with clinicopathological factors to increase the accuracy of predicting HCC prognosis. By investigating the relationship of the risk score and 8 risk genes from our signature with clinical traits, we found that the aberrant expression of the immune-related risk genes is correlated with the development of HCC. Moreover, the high-risk group was higher than the low-risk group in terms of tumor mutation burden (TMB), immune cell infiltration, and the expression of immune checkpoints (PD-1, PD-L1, and CTLA-4), and functional enrichment analysis indicated the signature enriched an intensive immune phenotype.Conclusions: This study developed a robust immune-related risk signature and built a predictive nomogram that reliably predict overall survival in HCC, which may be helpful for clinical management and personalized immunotherapy decisions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ke Wang ◽  
Weibo Zhong ◽  
Zining Long ◽  
Yufei Guo ◽  
Chuanfan Zhong ◽  
...  

The effects of 5-methylcytosine in RNA (m5C) in various human cancers have been increasingly studied recently; however, the m5C regulator signature in prostate cancer (PCa) has not been well established yet. In this study, we identified and characterized a series of m5C-related long non-coding RNAs (lncRNAs) in PCa. Univariate Cox regression analysis and least absolute shrinkage and selector operation (LASSO) regression analysis were implemented to construct a m5C-related lncRNA prognostic signature. Consequently, a prognostic m5C-lnc model was established, including 17 lncRNAs: MAFG-AS1, AC012510.1, AC012065.3, AL117332.1, AC132192.2, AP001160.2, AC129510.1, AC084018.2, UBXN10-AS1, AC138956.2, ZNF32-AS2, AC017100.1, AC004943.2, SP2-AS1, Z93930.2, AP001486.2, and LINC01135. The high m5C-lnc score calculated by the model significantly relates to poor biochemical recurrence (BCR)-free survival (p < 0.0001). Receiver operating characteristic (ROC) curves and a decision curve analysis (DCA) further validated the accuracy of the prognostic model. Subsequently, a predictive nomogram combining the prognostic model with clinical features was created, and it exhibited promising predictive efficacy for BCR risk stratification. Next, the competing endogenous RNA (ceRNA) network and lncRNA–protein interaction network were established to explore the potential functions of these 17 lncRNAs mechanically. In addition, functional enrichment analysis revealed that these lncRNAs are involved in many cellular metabolic pathways. Lastly, MAFG-AS1 was selected for experimental validation; it was upregulated in PCa and probably promoted PCa proliferation and invasion in vitro. These results offer some insights into the m5C's effects on PCa and reveal a predictive model with the potential clinical value to improve the prognosis of patients with PCa.


2020 ◽  
Author(s):  
Zhigang Wang ◽  
Leyu Pan ◽  
Deliang Guo ◽  
Xiaofeng Luo ◽  
Jie Tang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most common challenges for public health worldwide. Due to its complex molecular and great heterogeneity, the effectiveness of existing HCC risk prediction models is unsatisfactory. Hence, more accurate prognostic models are pressingly needed. Materials and methods: Differentially expressed mRNAs (DEMs) between HCC and normal tissues were identified after downloading GSE1450 from gene omnibus (GEO) database. We randomly divided all patients into training and testing sets. Univariate Cox regression, lasso Cox regression and multivariable Cox regression analysis were used to constructed the prognostic gene signature in training set. Our study utilized Kaplan-Meier plot, time-dependent receiver operating characteristic (ROC), multivariable Cox regression analysis with clinical information, nomogram and decision curve analysis (DCA) to evaluate the predictive ability for overall survival of the novel gene signature in training, testing and whole sets. We also validated the prognostic capacity of the five-gene signature in an external validation set. The information of mutation of each gene was explored on cBioPortal online website. We performed gene set enrichment analysis (GSEA) to explore underlying mechanisms in the high and low risk group. Finally, quantitative real-time PCR was conducted to validate the expression tendency between 12 paired HCC and adjacent normal tissues. Results: Our study constructed a novel five-gene signature (CNIH4, SOX4, SPP1, SORBS2 and CCL19) for predicting overall survival of HCC. Time-dependent ROC curve indicated admirable ability in survival prediction in two datasets. Multivariable Cox regression analysis indicated that both this five-gene signature and TNM stage were two independent prognostic factors for overall survival of HCC patients. Combined with TNM stage clinical pathological parameters, the predictive capacity of nomogram had a decent improvement. The mutation of the five genes had no obvious variation. Plenty pathways were enriched by GSEA, including cell cycle and various metabolism. Furthermore, the mRNA levels of these five genes had significantly different expressions between HCC tissues and adjacent normal tissues by quantitative real-time PCR. Conclusions: A five-gene prognostic model and nomogram were constructed and validated for predicting prognostic of HCC patients. And the five-gene risk score with TNM stage models might help various HCC patients to customize individual therapies.


2021 ◽  
Author(s):  
Jichang Liu ◽  
Yadong Wang ◽  
Weiqing Zhong ◽  
Yong Liu ◽  
Kai Wang ◽  
...  

Abstract Background: Lung cancer remains the most fatal tumorous disease in the worldwide. Among that, lung adenocarcinoma (LUAD) was the most common histological type. A precise and concise prognostic model was urgently needed of LUAD. We developed a 23-gene signature for prognosis prediction based on EMT, immune and stromal datasets.Methods: Univariate Cox regression analysis was performed to select genes which were significantly associated with overall survival (OS) of the TCGA LUAD cohorts. LASSO regression and multivariate Cox regression analysis was used to build the multi-gene signature. Enrichment analyses and a protein-protein interactions (PPI) network were performed to show the interaction and functions of the signature. A nomogram was developed based on risk score and other clinical features. Predictive performance of the signature was externally validated in two independent datasets from Gene Expression Omnibus (GSE37745 and GSE13213).Results: A total of 1334 EMT, immune and stromal associated genes were obtained. After LASSO regression and multivariate Cox regression analysis, a 23-gene signature for risk stratification was built. K-M curves showed that the patients with high risk had a poorer outcome. Finally, a nomogram was built to predict prognosis. The predictive performance of the 23-gene signature was confirmed in internal and external validation.Conclusion: We developed and verified a 23-gene signature based on EMT, immune and stromal gene sets. It provided a convenient and concise tool for risk stratificationand individual medicine.


Author(s):  
Jiao Jiao ◽  
Longyang Jiang ◽  
Yang Luo

Background: N6-Methyladenosine (m6A) RNA methylation is the most universal mRNA modification in eukaryotic cells. M6A mRNA modification affects almost every phases of RNA processing, including splicing, decay, export, translation and expression. Several patents have reported the application of m6A mRNA modification in cancer diagnosis and treatment. Ovarian cancer is the leading cause of death among all gynecological cancers. It is urgent to identify new biomarkers for early diagnosis and prognosis of ovarian cancer. Objective: In the current study, we aimed to evaluate the m6A RNA methylation regulators and m6A related genes and establish a new gene signature panel for prognosis of ovarian cancer. Method: We downloaded the Mutations data, FPKM data and corresponding clinical information of 373 patients with ovarian cancer (OC) from the TCGA database. We performed LASSO regression analysis and multivariate cox regression analysis to develop a risk-identifying gene signature panel. Results: A total of 317 candidate m6A RNA methylation related genes were obtained. Finally, 12 -genes (WTAP, LGR6, ZC2HC1A, SLC4A8, AP2A1, NRAS, CUX1, HDAC1, CD79A, ACE2, FLG2 and LRFN1) were selected to establish the signature panel. We analyzed the genetic alterations of the selected 12 -genes in OC using cBioPortal database. Among the 373 patients, 368 patients have mutations. The results showed that all queried genes were altered in 137 of 368 cases (37.23%). The 12-gene signature panel was confirmed as an independent prognostic indicator (P =2.29E-18, HR = 1.699, 95% CI = 1.508-1.913). Conclusion: We established an effective m6A-related gene signature panel consisted of 12 -genes, which can predict the outcome of patients with OC. The high risk score indicates unfavorable survival. Our study provided novel insights into the relationship between m6A and OC. This gene signature panel will be helpful in identifying poor prognostic patients with OC and could be a promising prognostic indicator in clinical practice.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiaojing Ren ◽  
Yuanyuan Ji ◽  
Xuhua Jiang ◽  
Xun Qi

Sialic-acid-binding immunoglobulin-like lectin (siglec) regulates cell death, anti-proliferative effects and mediates a variety of cellular activities. Little was known about the relationship between siglecs and hepatocellular carcinoma (HCC) prognosis. Siglec gene expression between tumor and non-tumor tissues were compared and correlated with overall survival (OS) from HCC patients in GSE14520 microarray expression profile. Siglec-1 to siglec-9 were all down-regulated in tumor tissues compared with those in non-tumor tissues in HCC patients (all P < 0.05). Univariate and multivariate Cox regression analysis revealed that siglec-2 overexpression could predict better OS (HR = 0.883, 95%CI = 0.806–0.966, P = 0.007). Patients with higher siglec-2 levels achieved longer OS months than those with lower siglec-2 levels in the Kaplan–Meier event analysis both in training and validation sets (P < 0.05). Alpha-fetoprotein (AFP) levels in siglec-2 low expression group were significantly higher than those in siglec-2 high expression group using Chi-square analysis (P = 0.043). In addition, both logistic regression analysis and ROC curve method showed that siglec-2 down-regulation in tumor tissues was significantly associated with AFP elevation over 300 ng/ml (P < 0.05). In conclusion, up-regulation of siglec-2 in tumor tissues could predict better OS in HCC patients. Mechanisms of siglec-2 in HCC development need further research.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuan-Chen Li ◽  
Ping-Hung Chen ◽  
Jen-Hao Yeh ◽  
Pojen Hsiao ◽  
Gin-Ho Lo ◽  
...  

Abstract Background The detection rate of Barcelona Clinic Liver Cancer (BCLC) very-early-stage hepatocellular carcinoma (HCC) is increasing because of advances in surveillance and improved imaging technologies for high-risk populations. Surgical resection (SR) and radiofrequency ablation (RFA) are both first‐line treatments for very-early-stage HCC, but the differences in clinical outcomes between patients treated with SR and RFA remain unclear. This study investigated the prognosis of SR and RFA for very-early‐stage HCC patients with long‐term follow‐up. Methods This study was retrospectively collected data on the clinicopathological characteristics, overall survival (OS), and disease-free survival (DFS) of 188 very-early-stage HCC patients (≤ 2 cm single HCC). OS and DFS were analyzed using the Kaplan–Meier method and Cox regression analysis. Propensity score matching (PSM) analysis was performed. Results Of the 188 HCC patients, 103 received SR and 85 received RFA. The median follow‐up time was 56 months. The SR group had significantly higher OS than the RFA group (10-year cumulative OS: 55.2% and 31.3% in the SR and RFA groups, respectively). No statistically significant difference was observed in DFS between the SR and RFA groups (10-year cumulative DFS: 45.9% and 32.6% in the SR and RFA groups, respectively). After PSM, the OS in the SR group remained significantly higher than that in the RFA group (10-year cumulative OS: 54.7% and 42.2% in the SR and RFA groups, respectively). No significant difference was observed in DFS between the SR and RFA groups (10-year cumulative DFS: 43.0% and 35.4% in the SR and RFA groups, respectively). Furthermore, in the multivariate Cox regression analysis, treatment type (hazard ratio (HR): 0.54, 95% confidence interval (CI): 0.31–0.95; P = 0.032) and total bilirubin (HR: 1.92; 95% CI: 1.09–3.41; P = 0.025) were highly associated with OS. In addition, age (HR: 2.14, 95% CI: 1.36–3.36; P = 0.001) and cirrhosis (HR: 1.79; 95% CI: 1.11–2.89; P = 0.018) were strongly associated with DFS. Conclusion For patients with very-early-stage HCC, SR was associated with significantly higher OS rates than RFA. However, no significant difference was observed in DFS between the SR and RFA groups.


2020 ◽  
Author(s):  
Zhuomao Mo ◽  
Shaoju Luo ◽  
Zhirui Cao ◽  
Hao Hu ◽  
Ling Yu ◽  
...  

Abstract Background mTORC1 signal pathway play a role in the initiation and progression of hepatocellular carcinoma (HCC), but no relevant gene signature was developed. This research aimed to explore the potential correlation between mTORC1 signal pathway and HCC and establish the related genes signature. Methods HCC cases were retrieved from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) databases. The genes to be included in mTORC1-assiociated signature were selected by performing univariate, multivariate Cox regression analysis and lasso regression analysis. Then, the signature was verified by survival analysis and multiple receiver operating characteristic (ROC) curve. Furthermore, a nomogram was established and evaluated by C-index, calibration plot and ROC curve. Results The signature was established with the six genes ( ETF1, GSR, SKAP2, HSPD1, CACYBP and PNP ). Under the grouping from signature, patients in the high- risk group showed worse survival than those in the low-risk group in both three datasets. The univariate and multivariate Cox regression analysis indicated that mTORC1 related signature can be the potential independent prognostic factor in HCC. Conclusion The mTORC1 associated gene signature established and validated in our research could be used as a potential prognostic factor in HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhuo-Yuan Chen ◽  
Huiqin Yang ◽  
Jie Bu ◽  
Qiong Chen ◽  
Zhen Yang ◽  
...  

Ewing sarcoma (ES) is one of the most common bone cancers in adolescents and children. Growing evidence supports the view that metabolism pathways play critical roles in numerous cancers (He et al. (2020)). However, the correlation between metabolism-associated genes (MTGs) and Ewing sarcoma has not been investigated systematically. Here, based on the univariate Cox regression analysis, we get survival genes from differentially expressed genes (DEGs) from Gene Expression Omnibus (GEO) cohort. Multivariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were employed to establish the MTG signature. Comprehensive survival analyses including receiver operating characteristic (ROC) curves and Kaplan–Meier analysis were applied to estimate the independent prognostic value of the signature. The ICGC cohort served as the validation cohort. A nomogram was constructed based on the risk score of the MTG signature and other independent clinical variables. The CIBERSORT algorithm was applied to estimate immune infiltration. In addition, we explored the correlation between MTG signature and immune checkpoints. Collectively, this work presents a novel MTG signature for prognostic prediction of Ewing sarcoma. It also suggests six genes that are potential prognostic indicators and therapeutic targets for ES.


Sign in / Sign up

Export Citation Format

Share Document