scholarly journals Modelling the Transmission Dynamics of Tuberculosis in the Ashanti Region of Ghana

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Felix Okoe Mettle ◽  
Prince Osei Affi ◽  
Clement Twumasi

Mathematical models can aid in elucidating the spread of infectious disease dynamics within a given population over time. In an attempt to model tuberculosis (TB) dynamics among high-burden districts in the Ashanti Region of Ghana, the SEIR epidemic model with demography was employed within both deterministic and stochastic settings for comparison purposes. The deterministic model showed success in modelling TB infection in the region to the transmission dynamics of the stochastic SEIR model over time. It predicted tuberculosis dying out in ten of twelve high-burden districts in the Ashanti Region, but an outbreak in Obuasi municipal and Amansie West district. The effect of introducing treatment at the incubation stage of TB transmission was also investigated, and it was discovered that treatment introduced at the exposed stage decreased the spread of TB. Branching process approximation was used to derive explicit forms of relevant epidemiological quantities of the deterministic SEIR model for stability analysis of equilibrium points. Numerical simulations were performed to validate the overall infection rate, basic reproductive number, herd immunity threshold, and Malthusian parameter based on bootstrapping, jackknife, and Latin Hypercube sampling schemes. It was recommended that the Ghana Health Service should find a good mechanism to detect TB in the early stages of infection in the region. Public health attention must also be given to districts with a potentially higher risk of experiencing endemic TB even though the estimates of the overall epidemic thresholds from our SEIR model suggested that the Ashanti Region as a whole had herd immunity against TB infection.

2021 ◽  
Vol 54 (1) ◽  
pp. 326-334
Author(s):  
Noor Badshah ◽  
Haji Akbar

Abstract We discussed stability analysis of susceptible-exposed-infectious-removed (SEIR) model for malaria disease through fractional order and check that malaria is epidemic or endemic in Khyber Pakhtunkhwa (Pakistan). We show that the model has two types of equilibrium points and check their stability through Routh-Hurwitz criterion. We find basic reproductive number using next-generation method. Finally, numerical simulations are also presented.


2018 ◽  
Vol 37 ◽  
pp. 39-50 ◽  
Author(s):  
Rafiqul Islam ◽  
Md Haider Ali Biswas ◽  
ARM Jalal Uddin Jamali

This study deals with transmission dynamics of novel influenza A (H1N1) virus to understand the evolution of its epidemic in Bangladesh. For this purpose an SEIR model has been employed to study the dynamics of A (H1N1) virus relating to data of Bangladesh. To find threshold conditions, the equilibria and stability of the equilibria of the model have been determined and also analyzed. Basic Reproductive Number (R0) is determined relating to data of Bangladesh by which Herd Immunity Threshold has been estimated. Our numerical result suggests that vaccinating 12.69% population of Bangladesh can control spread of the pandemic novel A (H1N1) virus when outbreak occurs.GANIT J. Bangladesh Math. Soc.Vol. 37 (2017) 39-50


2020 ◽  
Author(s):  
Dejen Ketema Mamo

AbstractIn this work, a researcher develop SHEIQRD (Susceptible-Stay at home-Exposed-Infected-Quarantine-Recovery-Death) coronavirus pandemic spread model. The disease-free and endemic equilibrium points are calculated and analyzed. The basic reproductive number ℛ0 is derived and its sensitivity analysis is done. COVID-19 pandemic spread is die out when ℛ0 ≤ 1 and its persist in the community whenever ℛ0 > 1. Efficient stay at home rate, high coverage of precise identification and isolation of expose and infected individuals, and redaction of transmission and stay at home return rate can be mitigate the pandemics. Finally, theoretical analysis and numerical results are consistent.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dominic Otoo ◽  
Shaibu Osman ◽  
Stephen Atta Poku ◽  
Elvis Kobina Donkoh

A deterministic model was formulated and employed in the analysis of the dynamics of tuberculosis with a keen emphasis on vaccination and drug resistance as the first line of treatment. It was assumed that some of the susceptible population were vaccinated but with temporal immunity. This is due to the fact that vaccines do not confer permanent immunity. Moreover, part of the infected individual after treatment grows resistance to the drug. Infective immigrants were also considered to be part of the population. The basic reproductive number for the model is estimated using the next-generation matrix method. The equilibrium points of the TB model and their local and global stability were determined. It was established that if the basic reproductive number was less than unity R 0 < 1 , then the disease free equilibrium is stable and unstable if R 0 > 1 . Furthermore, we investigated the optimal prevention, treatment, and vaccination as control measures for the disease. As the objective functional was optimised, there have been a significant reduction in the number of infections and an increase in the number of recovery. The best control measure in combating tuberculosis infections is prevention and vaccination of the susceptible population.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250029 ◽  
Author(s):  
S. MUSHAYABASA ◽  
C. P. BHUNU

A deterministic model for evaluating the impact of voluntary testing and treatment on the transmission dynamics of tuberculosis is formulated and analyzed. The epidemiological threshold, known as the reproduction number is derived and qualitatively used to investigate the existence and stability of the associated equilibrium of the model system. The disease-free equilibrium is shown to be locally-asymptotically stable when the reproductive number is less than unity, and unstable if this threshold parameter exceeds unity. It is shown, using the Centre Manifold theory, that the model undergoes the phenomenon of backward bifurcation where the stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction number is less than unity. The analysis of the reproduction number suggests that voluntary tuberculosis testing and treatment may lead to effective control of tuberculosis. Furthermore, numerical simulations support the fact that an increase voluntary tuberculosis testing and treatment have a positive impact in controlling the spread of tuberculosis in the community.


2019 ◽  
Vol 27 (1) ◽  
pp. 241-266
Author(s):  
FABIO SANCHEZ ◽  
JORGE ARROYO-ESQUIVEL ◽  
PAOLA VÁSQUEZ

For decades, dengue virus has caused major problems for public health officials in tropical and subtropical countries around the world. We construct a compartmental model that includes the role of hospitalized individuals in the transmission dynamics of dengue in Costa Rica. The basic reproductive number, R0, is computed, as well as a sensitivity analysis on R0 parameters. The global stability of the disease-free equilibrium is established. Numerical simulations under specific parameter scenarios are performed to determine optimal prevention/control strategies.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
D. Abraham Vianny ◽  
Mary Jacintha ◽  
Fatma Bozkurt Yousef

Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the basic reproductive number is calculated with the next-generation matrix approach. All equilibrium points related to the disease transmission model are then computed. Further, sufficient conditions to investigate all possible equilibria of the model are established in terms of the basic reproduction number (local stability) and are supported with time series, phase portraits and bifurcation diagrams. Finally, numerical simulations are provided to demonstrate the theoretical findings.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yongmei Su ◽  
Sinuo Liu ◽  
Shurui Song ◽  
Xiaoke Li ◽  
Yongan Ye

In this paper, a fractional-order HBV model was set up based on standard mass action incidences and quasisteady assumption. The basic reproductive number R0 and the cytotoxic T lymphocytes’ immune-response reproductive number R1 were derived. There were three equilibrium points of the model, and stable analysis of each equilibrium point was given with corresponding hypothesis about R0 or R1. Some numerical simulations were also given based on HBeAg clinical data, and the simulation showed that there existed positive logarithmic correlation between the number of infected cells and HBeAg, which was consistent with the clinical facts. The simulation also showed that the clinical individual differences should be reflected by the fractional-order model.


2014 ◽  
Vol 07 (01) ◽  
pp. 1450006 ◽  
Author(s):  
STEADY MUSHAYABASA ◽  
CLAVER P. BHUNU

Hepatitis C virus (HCV) is a blood-borne infection that can lead to progressive liver failure, cirrhosis, hepatocellular carcinoma and death. A deterministic mathematical model for assessing the impact of daily intravenous drug misuse on the transmission dynamics of HCV is presented and analyzed. A threshold quantity known as the reproductive number has been computed. Stability of the steady states has been investigated. The dynamical analysis reveals that the model has globally asymptotically stable steady states. The impact of daily intravenous drug misuse on the transmission dynamics of HCV has been discussed through the basic reproductive number and numerical simulations.


2020 ◽  
Vol 9 (4) ◽  
pp. 944 ◽  
Author(s):  
Kentaro Iwata ◽  
Chisato Miyakoshi

Ongoing outbreak of pneumonia caused by novel coronavirus (2019-nCoV) began in December 2019 in Wuhan, China, and the number of new patients continues to increase. Even though it began to spread to many other parts of the world, such as other Asian countries, the Americas, Europe, and the Middle East, the impact of secondary outbreaks caused by exported cases outside China remains unclear. We conducted simulations to estimate the impact of potential secondary outbreaks in a community outside China. Simulations using stochastic SEIR model were conducted, assuming one patient was imported to a community. Among 45 possible scenarios we prepared, the worst scenario resulted in the total number of persons recovered or removed to be 997 (95% CrI 990–1000) at day 100 and a maximum number of symptomatic infectious patients per day of 335 (95% CrI 232–478). Calculated mean basic reproductive number (R0) was 6.5 (Interquartile range, IQR 5.6–7.2). However, better case scenarios with different parameters led to no secondary cases. Altering parameters, especially time to hospital visit. could change the impact of a secondary outbreak. With these multiple scenarios with different parameters, healthcare professionals might be able to better prepare for this viral infection.


Sign in / Sign up

Export Citation Format

Share Document