scholarly journals Optimal Control and Temperature Variations of Malaria Transmission Dynamics

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-32
Author(s):  
Folashade B. Agusto

Malaria is a Plasmodium parasitic disease transmitted by infected female Anopheles mosquitoes. Climatic factors, such as temperature, humidity, rainfall, and wind, have significant effects on the incidence of most vector-borne diseases, including malaria. The mosquito behavior, life cycle, and overall fitness are affected by these climatic factors. This paper presents the results obtained from investigating the optimal control strategies for malaria in the presence of temperature variation using a temperature-dependent malaria model. The study further identified the temperature ranges in four different geographical regions of sub-Saharan Africa, suitable for mosquitoes. The optimal control strategies in the temperature suitable ranges suggest, on average, a high usage of both larvicides and adulticides followed by a moderate usage of personal protection such as bednet. The average optimal bednet usage mimics the solution profile of the mosquitoes as the mosquitoes respond to changes in temperature. Following the results from the optimal control, this study also investigates using a temperature-dependent model with insecticide-sensitive and insecticide-resistant mosquitoes the impact of insecticide-resistant mosquitoes on disease burden when temperature varies. The results obtained indicate that optimal bednet usage on average is higher when insecticide-resistant mosquitoes are present. Besides, the average bednet usage increases as temperature increases to the optimal temperature suitable for mosquitoes, and it decreases after that, a pattern similar to earlier results involving insecticide-sensitive mosquitoes. Thus, personal protection, particularly the use of bednets, should be encouraged not only at low temperatures but particularly at high temperatures when individuals avoid the use of bednets. Furthermore, control and reduction of malaria may be possible even when mosquitoes develop resistance to insecticides.

2020 ◽  
Vol 1 (1) ◽  
pp. 20-29
Author(s):  
Hussaini Ojagefu Adamu ◽  
Rahimat Oshuwa Hussaini ◽  
Cedric Obasuyi ◽  
Linus Irefo Anagha ◽  
Gabriel Oscy Okoduwa

AbstractMastitis is a disease of livestock that directly impede livestock production and thus hindering the socio-ecological development of sub-Saharan Africa. Studies have estimated the prevalence of this disease in 30% of Africa countries, with Ethiopia having the highest prevalence. The coverage is low, despite the wide livestock and dairy farms distribution in Africa. Furthermore, estimated economic losses due to the impact of mastitis are lacking in Nigeria. The disease is endemic in Nigeria as indicated by the available data and there are no proposed management plans or control strategies. This review is thus presented to serve as a wakeup call to all parties involved to intensify efforts towards the diagnosis, control, and management of the disease in Nigeria.


2020 ◽  
Vol 376 (1818) ◽  
pp. 20190817 ◽  
Author(s):  
Joel Hellewell ◽  
Ellie Sherrard-Smith ◽  
Sheila Ogoma ◽  
Thomas S. Churcher

Malaria control in sub-Saharan Africa relies on the widespread use of long-lasting insecticidal nets (LLINs) or the indoor residual spraying of insecticide. Disease transmission may be maintained even when these indoor interventions are universally used as some mosquitoes will bite in the early morning and evening when people are outside. As countries seek to eliminate malaria, they can target outdoor biting using new vector control tools such as spatial repellent emanators, which emit airborne insecticide to form a protective area around the user. Field data are used to incorporate a low-technology emanator into a mathematical model of malaria transmission to predict its public health impact across a range of scenarios. Targeting outdoor biting by repeatedly distributing emanators alongside LLINs increases the chance of elimination, but the additional benefit depends on the level of anthropophagy in the local mosquito population, emanator effectiveness and the pre-intervention proportion of mosquitoes biting outdoors. High proportions of pyrethroid-resistant mosquitoes diminish LLIN impact because of reduced mosquito mortality. When mosquitoes are highly anthropophagic, this reduced mortality leads to more outdoor biting and a reduced additional benefit of emanators, even if emanators are assumed to retain their effectiveness in the presence of pyrethroid resistance. Different target product profiles are examined, which show the extra epidemiological benefits of spatial repellents that induce mosquito mortality. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Aristide G. Lambura ◽  
Gasper G. Mwanga ◽  
Livingstone Luboobi ◽  
Dmitry Kuznetsov

A deterministic mathematical model for the transmission and control of cointeraction of helminths and tuberculosis is presented, to examine the impact of helminth on tuberculosis and the effect of control strategies. The equilibrium point is established, and the effective reproduction number is computed. The disease-free equilibrium point is confirmed to be asymptotically stable whenever the effective reproduction number is less than the unit. The analysis of the effective reproduction number indicates that an increase in the helminth cases increases the tuberculosis cases, suggesting that the control of helminth infection has a positive impact on controlling the dynamics of tuberculosis. The possibility of bifurcation is investigated using the Center Manifold Theorem. Sensitivity analysis is performed to determine the effect of every parameter on the spread of the two diseases. The model is extended to incorporate control measures, and Pontryagin’s Maximum Principle is applied to derive the necessary conditions for optimal control. The optimal control problem is solved numerically by the iterative scheme by considering vaccination of infants for Mtb, treatment of individuals with active tuberculosis, mass drug administration with regular antihelminthic drugs, and sanitation control strategies. The results show that a combination of educational campaign, treatment of individuals with active tuberculosis, mass drug administration, and sanitation is the most effective strategy to control helminth-Mtb coinfection. Thus, to effectively control the helminth-Mtb coinfection, we suggest to public health stakeholders to apply intervention strategies that are aimed at controlling helminth infection and the combination of vaccination of infants and treatment of individuals with active tuberculosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qingyi Zhu ◽  
Seng W. Loke ◽  
Ye Zhang

The rapid propagation of computer virus is one of the greatest threats to current cybersecurity. This work deals with the optimal control problem of virus propagation among computers and external devices. To formulate this problem, two control strategies are introduced: (a) external device blocking, which means prohibiting a fraction of connections between external devices and computers, and (b) computer reconstruction, which includes updating or reinstalling of some infected computers. Then the combination of both the impact of infection and the cost of controls is minimized. In contrast with previous works, this paper takes into account a state-based cost weight index in the objection function instead of a fixed one. By using Pontryagin’s minimum principle and a modified forward-backward difference approximation algorithm, the optimal solution of the system is investigated and numerically solved. Then numerical results show the flexibility of proposed approach compared to the regular optimal control. More numerical results are also given to evaluate the performance of our approach with respect to various weight indexes.


Author(s):  
Atokolo William ◽  
Akpa Johnson ◽  
Daniel Musa Alih ◽  
Olayemi Kehinde Samuel ◽  
C. E. Mbah Godwin

This work is aimed at formulating a mathematical model for the control of zika virus infection using Sterile Insect Technology (SIT). The model is extended to incorporate optimal control strategy by introducing three control measures. The optimal control is aimed at minimizing the number of Exposed human, Infected human and the total number of Mosquitoes in a population and as such reducing contacts between mosquitoes and human, human to human and above all, eliminates the population of Mosquitoes. The Pontryagin’s maximum principle was used to obtain the necessary conditions, find the optimality system of our model and to obtain solution to the control problem. Numerical simulations result shows that; reduction in the number of Exposed human population, Infected human population and reduction in the entire population of Mosquito population is best achieved using the optimal control strategy.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Adnan Khan ◽  
Sultan Sial ◽  
Mudassar Imran

We present a rigorous mathematical analysis of a deterministic model, for the transmission dynamics of hepatitis C, using a standard incidence function. The infected population is divided into three distinct compartments featuring two distinct infection stages (acute and chronic) along with an isolation compartment. It is shown that for basic reproduction number R0≤1, the disease-free equilibrium is locally and globally asymptotically stable. The model also has an endemic equilibrium for R0>1. Uncertainty and sensitivity analyses are carried out to identify and study the impact of critical parameters on R0. In addition, we have presented the numerical simulations to investigate the influence of different important parameters on R0. Since we have a locally stable endemic equilibrium, optimal control is applied to the deterministic model to reduce the total infected population. Two different optimal control strategies (vaccination and isolation) are designed to control the disease and reduce the infected population. Pontryagin’s Maximum Principle is used to characterize the optimal controls in terms of an optimality system which is solved numerically. Numerical results for the optimal controls are compared against the constant controls and their effectiveness is discussed.


2020 ◽  
Vol 10 (21) ◽  
pp. 7559
Author(s):  
Mustapha Lhous ◽  
Omar Zakary ◽  
Mostafa Rachik ◽  
El Mostafa Magri ◽  
Abdessamad Tridane

This work investigates the optimal control of the second phase of the COVID-19 lockdown in Morocco. The model consists of susceptible, exposed, infected, recovered, and quarantine compartments (SEIRQD model), where we take into account contact tracing, social distancing, quarantine, and treatment measures during the nationwide lockdown in Morocco. First, we present different components of the model and their interactions. Second, to validate our model, the nonlinear least-squares method is used to estimate the model’s parameters by fitting the model outcomes to real data of the COVID-19 in Morocco. Next, to investigate the impact of optimal control strategies on this pandemic in the country. We also give numerical simulations to illustrate and compare the obtained results with the actual situation in Morocco.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Purity Ngina ◽  
Rachel Waema Mbogo ◽  
Livingstone S. Luboobi

HIV is one of the major causes of deaths, especially in Sub-Saharan Africa. In this paper, an in vivo deterministic model of differential equations is presented and analyzed for HIV dynamics. Optimal control theory is applied to investigate the key roles played by the various HIV treatment strategies. In particular, we establish the optimal strategies for controlling the infection using three treatment regimes as the system control variables. We have applied Pontryagin’s Maximum Principle in characterizing the optimality control, which then has been solved numerically by applying the Runge-Kutta forth-order scheme. The numerical results indicate that an optimal controlled treatment strategy would ensure significant reduction in viral load and also in HIV transmission. It is also evident from the results that protease inhibitor plays a key role in virus suppression; this is not to underscore the benefits accrued when all the three drug regimes are used in combination.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750055 ◽  
Author(s):  
Gbenga J. Abiodun ◽  
Peter Witbooi ◽  
Kazeem O. Okosun

Malaria parasites are strongly dependent on Anopheles mosquitoes for transmission; for this reason, mosquito population dynamics are a crucial determinant of malaria risk. However, temperature and rainfall play a significant role in both aquatic and adult stages of the Anopheles. Consequently, it is important to understand the biology of malaria vector mosquitoes in the study of malaria transmission. In this study, we develop a climate-based, ordinary-differential-equation model to analyze how rainfall and temperature determine mosquito population size. In the model, we consider in detail the influence of ambient temperature on gonotrophic and sporogonic cycles over Amajuba District, Kwazulu-Natal Province, South Africa. In particular, we further use the model to simulate the spatial distribution of the mosquito biting rate over the study region. Our results reflect high seasonality of the population of An. gambiae over the region and also demonstrate the influence of climatic factors on the mosquito population dynamics.


Author(s):  
Nkuba Nyerere ◽  
Livingstone S. Luboobi ◽  
Saul C. Mpeshe ◽  
Gabriel M. Shirima

Brucellosis is a zoonotic infection caused by Gram-negative bacteria of genus Brucella. The disease is of public health, veterinary, and economic significance in most of the developed and developing countries. Direct contact between susceptible and infective animals or their contaminated products are the two major routes of the disease transmission. In this paper, we investigate the impacts of controls of livestock vaccination, gradual culling through slaughter of seropositive cattle and small ruminants, environmental hygiene and sanitation, and personal protection in humans on the transmission dynamics of Brucellosis. The necessary conditions for an optimal control problem are rigorously analyzed using Pontryagin’s maximum principle. The main ambition is to minimize the spread of brucellosis disease in the community as well as the costs of control strategies. Findings showed that the effective use of livestock vaccination, gradual culling through slaughter of seropositive cattle and small ruminants, environmental hygiene and sanitation, and personal protection in humans have a significant impact in minimizing the disease spread in livestock and human populations. Moreover, cost-effectiveness analysis of the controls showed that the combination of livestock vaccination, gradual culling through slaughter, environmental sanitation, and personal protection in humans has high impact and lower cost of prevention.


Sign in / Sign up

Export Citation Format

Share Document