scholarly journals Interaction between Track and Long-Span Cable-Stayed Bridge: Recommendations for Calculation

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Kaize Xie ◽  
Weigang Zhao ◽  
Xiaopei Cai ◽  
Ping Wang ◽  
Jia Zhao

Geometric nonlinearity (GN) and initial internal forces (IIFs) are the basic characteristics of cable-stayed bridges, but now there is no effective method for analyzing the effect of them on bridge-track interaction of continuous welded rail (CWR) on cable-stayed bridge. A method for reconstructing the displacement-force curve of ballast longitudinal resistance was put forward according to the deformation of cable-stayed bridges under the completed bridge state. A feasibility study on the method was conducted via two aspects of the force and deformation of CWR on a 5 × 40 m single-line simple-supported beam bridge with initial deformation. With the multi-element modeling method and the updated Lagrangian formulation method, a rail-beam-cable-tower 3D calculation model considering the GN and IIFs of cable-stayed bridge was established. Taking a (140 + 462 + 1092 + 462 + 140 m) twin-tower cable-stayed bridge as an example, the impacts of GN and IIFs on bridge-track interaction were comparatively analyzed. The results show that the method put forward to reconstruct ballast longitudinal resistance can prevent the impact of initial deformation of bridge and makes it possible to consider the effect of IIFs of cable-stayed bridge on bridge-track interaction. The GN and IIFs play important roles in the calculation of rail longitudinal force due to vertical bending of bridge deck under train load and the variance of cable force due to negative temperature changes in bridge decks and rails with rail breaking, and the two factors can reduce rail longitudinal force and variance of cable force by 11.8% and 14.6%, respectively. The cable-stayed bridge can be simplified as a continuous beam bridge with different constraints at different locations, when rail longitudinal force due to positive temperature changes in bridge deck and train braking is calculated.

2008 ◽  
Vol 08 (04) ◽  
pp. 627-643 ◽  
Author(s):  
G. T. MICHALTSOS ◽  
I. G. RAFTOYIANNIS ◽  
T. G. KONSTANTAKOPOULOS

This paper deals with the stability of the pylons of a cable-stayed bridge under the action of time-dependent loads, due to the vibration of the bridge deck. The stability of such problems of cable-stayed bridges is solved by a technique developed in the Laboratory of Metal Structures and Steel Bridges, of National Technical University of Athens (NTUA), as well as Bolotin's technique for the solution of nonlinear problems of dynamic stability. Three cases are studied: pylons with damping, pylons under forced vibration, and pylons subjected to an arbitrary external dynamic load. Useful relations are established by the aforementioned solution method, examples for a variety of pylons are presented, and interesting results regarding the stability of each case are given in diagrams.


2012 ◽  
Vol 525-526 ◽  
pp. 593-596
Author(s):  
Sung Tae Kim ◽  
Sung Yong Park ◽  
Keun Hee Cho ◽  
Jeong Rae Cho ◽  
Byung Suk Kim

This study is related to the FRP-concrete composite bridge deck for cable-stayed bridges developed by the Korea Institute of Construction Technology since 2007. This deck disposes a FRP panel at the bottom and is orthotropic owing to its fabrication through pultrusion process. In the cable-stayed bridge applying precast deck, support conditions occur at the cross beam and edge girder. Therefore, need is to verify the performances in the longitudinal and transverse directions when applying the orthotropic deck to cable-stayed bridges. Accordingly, specimens enabling to verify the performance in each direction are fabricated and subject to structural performance test. Based on the test results, the serviceability and applicability of the FRP-concrete composite deck to cable-stayed bridges are evaluated.


2011 ◽  
Vol 255-260 ◽  
pp. 1319-1325 ◽  
Author(s):  
Li Wen Zhang ◽  
Rui Jie Xia

Based on the mechanics characteristics of partially earth-anchored cable-stayed bridge, the criterion of reasonable finished dead state was presented. The effect factors considered include: the distribution of cable force, the inner force of girder and tower, the dimension of earth-anchor, and the displacement of tower top. Combined with methods to determine cable force of traditional self-anchored cable-stayed bridges in reasonable completed status, a two-stage method was used to find the cable force of these bridges which was divided into finding the initial cable force with rigid supported continuous beam method and then fix on the final optimized cable force in the reasonable completed status through adjusting the initial cable force in first stage with influence matrix method. And the adjustment process of cable force in secondary stage was proposed based on the mechanics characteristics of these bridges. Finally, a calculation was carried out for a partially earth-anchored cable-stayed bridge with 1218m main span and composite beam. The result shows that this method was logical, practical convenient and efficient. And the cable force in the reasonable completed status of bridges can be obtained faster according to the adjustment process of cable force in secondary stage.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ravi Mudragada ◽  
S. S. Mishra

AbstractMany researchers have carried out experimental and numerical investigations to examine building structures’ response to explosive loads. Studies of bridges subjected to blast loads are limited. Hence, in this study, we present a case study on a cable-stayed bridge, namely, Charles River Cable-Stayed Bridge-Boston, to assess its robustness and resistance against the progressive collapse resulting from localized failure due to blast loads. Three different blast scenarios are considered to interpret the bridge performance to blast loads. To monitor the progressive failure mechanisms of the structural elements due to blast, pre-defined plastic hinges are assigned to the bridge deck. The results conclude that the bridge is too weak to sustain the blast loads near the tower location, and the progressive collapse is inevitable. Hence, to preserve this cable-stayed bridge from local and global failure, structural components should be more reinforced near the tower location. This case study helps the designer better understand the need for blast resistance design of cable-stayed bridges.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2889
Author(s):  
Jacek Kukulski ◽  
Piotr Gołębiowski ◽  
Jacek Makowski ◽  
Ilona Jacyna-Gołda ◽  
Jolanta Żak

The correct operation of the continuous welded track requires diagnosing its condition and preparation of track metrics requiring measurements of displacements of rail under operation. This is required as there are additional thermal stresses in the rails with values depending on the temperature changes of the rails. Therefore, the climatic conditions are important. This paper presents the original effective analytical method for diagnosing the condition of continuous welded track based on experimental research. The method allows for an appropriate repair or maintenance recommendation. In the experimental research, the authors considered track diagnostic conditions for two conditions: track under load and track without load. This paper presents empirical formulas for calculating rail temperature and longitudinal force based on ambient temperature, developed from long-term measurements. The formulas were developed for a track located on a straight section—both for a rail loaded and unloaded with a passing train under the following conditions: 60E1 rail, not on an engineering structure, conventional surface, wooden sleepers and very high train traffic load. The obtained results in the value of the correlation coefficient R2 ≥ 0.995 attest to very high accuracy of the calculations performed with the method proposed by the authors.


2014 ◽  
Vol 587-589 ◽  
pp. 1558-1562
Author(s):  
Hai Hong Mo

The nonlinear basic theory and nonlinear influence factor of cable-stayed bridge has been introduced. Quantitative analysis to the sag effect, beam-column effect and large deformation effect has been done based on a cable-stayed bridge. Analysis show that the sag effect, beam-column effect and large deformation effect of cable force is not obvious, but the sag effect should not been ignored in the calculation of the main beam.


2012 ◽  
Vol 568 ◽  
pp. 200-203
Author(s):  
Xiang Nan Wu ◽  
Xiao Liang Zhai ◽  
Ming Min Zhou

There exist evident shear-lag phenomena in large-span composite cable-stayed bridges under the action of axial force, especially in the deck with double main girders. In order to discuss the distribution law of the effective flange width coefficient along the span, caused by axial force, finite element computations of five composite cable-stayed bridges and theoretical analysis have been performed. The transmission angle of axial force caused by the axial compression of stay cables was given, meanwhile the formulas for computation effective slab width coefficient under axial force were suggested.


2021 ◽  
Author(s):  
Li Dong ◽  
Bin Xie ◽  
Dongli Sun ◽  
Yizhuo Zhang

<p>Cable forces are primary factors influencing the design of a cable-stayed bridge. A fast and practical method for cable force estimation is proposed in this paper. For this purpose, five input parameters representing the main characteristics of a cable-stayed bridge and two output parameters representing the cable forces in two key construction stages are defined. Twenty different representative cable-stayed bridges are selected for further prediction. The cable forces are carefully optimized through finite element analysis. Then, discrete and fuzzy processing is applied in data processing to improve their reliability and practicality. Finally, based on the input parameters of a target bridge, the maximum possible output parameters are calculated by Bayes estimation based on the processed data. The calculation results show that the average prediction error of this method is less than 1% for the twenty bridges themselves, which provide the primary data and less than 3% for an under-construction bridge.</p>


Author(s):  
Yuhao Huang ◽  
Liu Chao ◽  
Xu Dong

<p>Recently, composite girder cable-stayed bridge is widely used in the world. Since the existing design method takes less focus on the principal stress of the top and bottom slab, the cracking problem of the concrete bridge deck has not been solved perfectly yet. Based on the spatial grid model, this paper takes Guan He Bridge in Jiangsu province as an example to analyze this kind of structure. Monitoring the principal stress of the concrete bridge deck is proposed for the first time to study the effect of diagonal crack. The principal stress of the concrete deck in the middle span, the quartile span, one-eighth of the span, the side span, the bridge tower, and the auxiliary pier are observed respectively. Comparing the theoretical values with the measured value, the results show that the actual stress state of the whole concrete bridge deck during construction is in accordance with the theoretical calculation. For composite girder cable-stayed bridge, the concrete bridge deck is prone to crack, so it is very significant to control the quality in the construction stage, which can provide a guarantee for the safety and durability of the structure.</p>


Author(s):  
Matti Kabos ◽  
Edwin Thie ◽  
Conor Lavery

As part of a major renovation programme of critical highway infrastructure in the Netherlands, the Tacitus Bridge at Ewijk, a 1055-metre-long orthotropic steel box girder deck of ten spans, with a main cable-stayed span of 270 metres, has undergone extensive strengthening and refurbishment. Due to the presence of micro-fissure defects identified in the existing lock coiled stay cables and an increase in permanent load on the bridge deck resulting from the addition of a high strength concrete overlay acting compositely with the orthotropic steel deck, it was concluded that the existing stay cables needed replacement. This paper presents the analytical approach developed to verify that the existing stay cables could be removed with no additional temporary supports and the use of advanced non-linear techniques to predict and monitor the performance of the bridge during each step of destressing the existing stay cables and of tensioning the new parallel strand cables.


Sign in / Sign up

Export Citation Format

Share Document