scholarly journals A Novel Voltage-Controlled Tri-Valued Memristor and Its Application in Chaotic System

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaoyuan Wang ◽  
Xue Zhang ◽  
Meng Gao

Memristor is a kind of passive nonlinear element, which is widely used in nonlinear systems, especially chaotic systems, because of its nanometer size, nonvolatile property, and good nonlinear characteristics. Compared with general chaotic systems, chaotic systems based on memristors have richer dynamic characteristics. However, the current research mainly focuses on the binary and continuous chaotic systems based on memristors, and studies on the tri-valued and multi-valued memristor chaotic systems are relative scarce. For this reason, a mathematical model of tri-valued memristor is proposed, and the circuit characteristics of the model are studied. Furthermore, based on this model, a new chaotic system is designed and analyzed. This innovation enriches the types of chaotic systems and lays the foundation for the application of tri-valued and multi-valued memristors in nonlinear systems.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Haipeng Su ◽  
Runzi Luo ◽  
Ling Xu ◽  
Meichun Huang ◽  
Jiaojiao Fu

This paper studies the control of a class of 3D chaotic systems with uncertain parameters and external disturbances. A new method which is referred as the analytical solution approach is firstly proposed for constructing Lyapunov function. Then, for suppressing the trajectories of the 3D chaotic system to its equilibrium point 00,0,0, a novel fast convergence controller containing parameter λ which determines the convergence rate of the system is presented. By using the designed Lyapunov function, the stability of the closed-loop system is proved via the Lyapunov stability theorem. Computer simulations are employed to a new chaotic system to illustrate the effectiveness of the theoretical results.


2018 ◽  
Vol 7 (3) ◽  
pp. 1931 ◽  
Author(s):  
Sivaperumal Sampath ◽  
Sundarapandian Vaidyanathan ◽  
Aceng Sambas ◽  
Mohamad Afendee ◽  
Mustafa Mamat ◽  
...  

This paper reports the finding a new four-scroll chaotic system with four nonlinearities. The proposed system is a new addition to existing multi-scroll chaotic systems in the literature. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system via MATLAB are unveiled. As the new four-scroll chaotic system is shown to have three unstable equilibrium points, it has a self-excited chaotic attractor. An electronic circuit simulation of the new four-scroll chaotic system is shown using MultiSIM to check the feasibility of the four-scroll chaotic model.


2019 ◽  
Vol 9 (4) ◽  
pp. 781 ◽  
Author(s):  
Xiong Wang ◽  
Ünal Çavuşoğlu ◽  
Sezgin Kacar ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Chaotic systems without equilibrium are of interest because they are the systems with hidden attractors. A nonequilibrium system with chaos is introduced in this work. Chaotic behavior of the system is verified by phase portraits, Lyapunov exponents, and entropy. We have implemented a real electronic circuit of the system and reported experimental results. By using this new chaotic system, we have constructed S-boxes which are applied to propose a novel image encryption algorithm. In the designed encryption algorithm, three S-boxes with strong cryptographic properties are used for the sub-byte operation. Particularly, the S-box for the sub-byte process is selected randomly. In addition, performance analyses of S-boxes and security analyses of the encryption processes have been presented.


2018 ◽  
Vol 7 (3) ◽  
pp. 1245 ◽  
Author(s):  
Aceng Sambas ◽  
Mustafa Mamat ◽  
Sundarapandian Vaidyanathan ◽  
Muhammad Mohamed ◽  
Mada Sanjaya

In the chaos literature, there is currently significant interest in the discovery of new chaotic systems with hidden chaotic attractors. A new 4-D chaotic system with only two quadratic nonlinearities is investigated in this work. First, we derive a no-equilibrium chaotic system and show that the new chaotic system exhibits hidden attractor. Properties of the new chaotic system are analyzed by means of phase portraits, Lyapunov chaos exponents, and Kaplan-Yorke dimension. Then an electronic circuit realization is shown to validate the chaotic behavior of the new 4-D chaotic system. Finally, the physical circuit experimental results of the 4-D chaotic system show agreement with numerical simulations.


2018 ◽  
Vol 28 (13) ◽  
pp. 1850164 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Shirin Panahi ◽  
Anitha Karthikeyan ◽  
Ahmed Alsaedi ◽  
Viet-Thanh Pham ◽  
...  

Designing new chaotic system with specific features is an interesting field in nonlinear dynamics. In this paper, some new chaotic systems with cyclic symmetry are proposed. In order to understand the overall behavior of such systems, the dynamical analyses such as stability analysis, bifurcation and Lyapunov exponent analysis are done. The accurate examination of bifurcation plot represents that these systems are multistable which makes them more interesting. Also, the basin of attraction of these systems is investigated to detect the type of attractors of these systems which are self-excited. Finally, the circuit implementation is carried out to show their feasibility.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Rui Wang ◽  
Peifeng Du ◽  
Wenqi Zhong ◽  
Han Han ◽  
Hui Sun

Semitensor product theory can deal with matrices multiplication with different numbers of columns and rows. Therefore, a new chaotic system for different high dimensions can be created by employing a semitensor product of chaotic systems with different dimensions, so that more channels can be selected for encryption. This paper proposes a new chaotic system generated by semitensor product applied on Qi and Lorenz systems. The corresponding dynamic characteristics of the new system are discussed in this paper to verify the existences of different attractors. The detailed algorithms are illustrated in this paper. The FPGA hardware encryption implementations are also elaborated and conducted. Correspondingly, the randomness tests are realized as well, and compared to that of the individual Qi system and Lorenz system, the proposed system in this paper owns the better randomness characteristic. The statistical analyses and differential and correlation analyses are also discussed.


2017 ◽  
Vol 27 (10) ◽  
pp. 1750152 ◽  
Author(s):  
Zhen Wang ◽  
Zhe Xu ◽  
Ezzedine Mliki ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Designing chaotic systems with specific features is a very interesting topic in nonlinear dynamics. However most of the efforts in this area are about features in the structure of the equations, while there is less attention to features in the topology of strange attractors. In this paper, we introduce a new chaotic system with unique property. It has been designed in such a way that a specific property has been injected to it. This new system is analyzed carefully and its real circuit implementation is presented.


2011 ◽  
Vol 217-218 ◽  
pp. 1725-1728
Author(s):  
Wei Fan ◽  
Zhong Lin Wang ◽  
Ming Qing Xu ◽  
Ai Feng Wang

A new chaotic system is built which is consists of two subsystems. A subsystem is analyzed such as equilibrium, eigenvalue, Lyapunov, dimension and Lyapunov exponent. A practical circuit is designed to realize the system and the experimentation is carried out. The manifold chaotic attractor of the two subsystems is observed in the oscillograph, it is good agree with simulation.


2012 ◽  
Vol 542-543 ◽  
pp. 1042-1046 ◽  
Author(s):  
Xin Deng

In this paper, the first new chaotic system is gained by anti-controlling Chen system,which belongs to the general Lorenz system; also, the second new chaotic system is gained by anti-controlling the first new chaotic system, which belongs to the general Lü system. Moreover,some basic dynamical properties of two new chaotic systems are studied, either numerically or analytically. The obtained results show clearly that Chen chaotic system and two new chaotic systems also can form another Lorenz system family and deserve further detailed investigation.


2021 ◽  
Author(s):  
Ryam Salam Abdulaali ◽  
Raied K. Jamal ◽  
Salam K. Mousa

Abstract It is proposed in this paper that a new chaotic system may be formed by combining two distinct chaotic systems, such as the Rossler system and the Chua system, in which the x dynamic of the Rossler system is linked with the z dynamic of the Chua system, results in a new chaotic system. Some of the basic dynamic behavior is explored and examined for new system by using the Matlab program. They noticed that it was a difference in the time series of the Chua system and this in turn led to a difference in the attractor, as the attractor of the Chua system changed from double scroll to single scroll and this led to change of the bandwidth of the Chua system, meaning that the Rӧssler system affected the Chua system, which led to an increase in the possibility of using this system in secret communications.


Sign in / Sign up

Export Citation Format

Share Document