scholarly journals An Extension of Taylor’s φ-Circle Method and Some Stability Charts for Submerged Slopes

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ping Li ◽  
Luanhua Dong ◽  
Xiaowen Gao ◽  
Tonglu Li ◽  
Xiaokun Hou

Taylor’s φ-circle method is a classical method for slope stability calculation, which has analytical solutions. Taylor derived equations in two cases separately, namely, (i) the outlet of the critical failure surface is at the slope toe and (ii) the outlet of the failure surfaces is not at the slope toe. The method is only appropriate for two conditions (without underground water table in slopes or totally submerged slopes). In this study, a general equation that unifies the equations of the two cases is proposed and partially submerged condition is introduced. The critical failure surfaces corresponding to the minimum factor of safety are determined using the computer program proposed by the authors. The general expression of the safety factor of slopes under the following four conditions is derived, namely, (i) partly submerged, (ii) completely submerged, (iii) water sudden drawdown, and (iv) water slow drawdown. The corresponding charts for practical use are available.

1985 ◽  
Vol 22 (3) ◽  
pp. 409-413
Author(s):  
Peter Rosenberg ◽  
Jacques Provençal ◽  
Guy Lefebvre ◽  
J.-Jacques Paré

The Rivière Broadback in northern Québec flows westward almost parallel to latitude 51 °N to discharge into Baie James at its southern end. Near the estuary the river banks are in clay. Surveys of the landsliding activity showed that many of the slides are superficial, with depths seldom greater than about 2 m, and are usually in the clay crust.Instrumentation revealed regional groundwater pattern close to the river banks that showed areas varying from those with significant underdrainage to those with hydrostatic pressure conditions. The stability of 26 m high river slopes inclined at 27° in an area of underdrainage was investigated.Triaxial testing on undisturbed tube samples was used to obtain the postpeak parameters. Stability analyses gave a factor of safety close to one for shallow failure surfaces. With underdrainage, the factor of safety for deep failure surfaces is appreciably higher. When hydrostatic pore pressure conditions are assumed, analysis gave a factor of safety for deep failure that was reduced by about 30%.The results of the analyses emphasize the relation between the morphology of the landslide activity and the groundwater regime. With underdrainage, effective stresses increase much faster with depth and the critical failure surface is always close to the surface, as confirmed by field observations. Key words: natural slope, clay, pore pressure, field measurements, stability failure surface, failure morphology.


Author(s):  
Jayraj Singh ◽  
A. K. Verma ◽  
Haider Banka

Locating critical failure surface in a rock or soil slope is performed in stability analysis to access the optimal safe design of the slope. Finding the critical failure surface associated with a minimum factor of safety value in slope stability analysis is very cumbersome and becomes a global optimization problem in the field of geotechnical and mining engineering. The presence of many local minimal points in the search space and discontinuous function made this factor of safety margin big and proves to be a chief constraint global optimization problem. In this chapter, some meta-heuristic techniques such as genetic algorithm, particle swarm optimization algorithm are adopted for analyzing the critical failure surface. A comparative study has been done to analyze safety factor for the slope stability analysis. The outcome result acquires acceptable performance over existing methods and confirms the higher slope stability analysis. The validation and simulation design of the proposed methodology will be investigated by using “slide-tool” from rock science engineering.


2014 ◽  
Vol 5 (2) ◽  
pp. 37-43 ◽  
Author(s):  
Sima Ghosh

In this present paper, a circular failure surface passing through the toe is assumed for a homogeneous soil, and the Fellenius line is used to locate the centre of the most critical circle. Using limit equilibrium analysis under the influence of static forces such as weight of potential slide mass and surcharge along with the pseudo-static seismic forces are considered to obtain the factor of safety of the slopes. Factor of safety is found through the application of force equilibrium. The effects of variation of different parameters like slope angle (i), soil friction angle (F) and seismic acceleration coefficients both in the horizontal and vertical directions (kh and kv respectively) on the factor of safety are presented. Finally, the present results are compared to the existing solutions available in literature and found to give minimum values of factor of safety using the present approach for seismic slope stability analysis.


2019 ◽  
Vol 11 (3) ◽  
pp. 884 ◽  
Author(s):  
Jan Blachowski ◽  
Anna Kopec ◽  
Wojciech Milczarek ◽  
Karolina Owczarz

The issue of monitoring surface motions in post-mining areas in Europe is important due to the fact that a significant number of post-mining areas lie in highly-urbanized and densely-populated regions. Examples can be found in: Belgium, the Czech Republic, France, Germany, the Netherlands, Spain, the United Kingdom, as well as the subject of this study, the Polish Walbrzych Hard Coal Basin. Studies of abandoned coal fields show that surface deformations in post-mining areas occur even several dozen years after the end of underground coal extraction, posing a threat to new development of these areas. In the case of the Walbrzych area, fragmentary, geodetic measurements indicate activity of the surface in the post-mining period (from 1995 onward). In this work, we aimed at determining the evolution of surface deformations in time during the first 15 years after the end of mining, i.e., the 1995–2010 period using ERS 1/2 and Envisat satellite radar data. Satellite radar data from European Space Agency missions are the only source of information on historical surface movements and provide spatial coverage of the entirety of the coal fields. In addition, we attempted to analyze the relationship of the ground deformations with hydrogeological changes and geological and mining data. Three distinct stages of ground movements were identified in the study. The ground motions (LOS (Line Of Sight)) determined with the PSInSAR (Persistent Scatterer Interferometry) method indicate uplift of the surface of up to +8 mm/a in the first period (until 2002). The extent and rate of this motion was congruent with the process of underground water table restoration in separate water basins associated with three neighboring coal fields. In the second period, after the stabilization of the underground water table, the surface remained active, as indicated by local subsidence (up to −5 mm/a) and uplift (up to +5 mm/a) zones. We hypothesize that this surface activity is the result of ground reaction disturbed by long-term shallow and deep mining. The third stage is characterized by gradual stabilization and decreasing deformations of the surface. The results accentuate the complexity of ground motion processes in post-mining areas, the advantages of the satellite radar technique for historical studies, and provide information for authorities responsible for new development of such areas, e.g., regarding potential flood zones caused by restoration of groundwater table in subsided areas.


1984 ◽  
Vol 21 (2) ◽  
pp. 363-370 ◽  
Author(s):  
J. N. Hutchinson

The effects on stability of concentrated downward and upward influence loads acting at successive positions between the head and toe of a landslide with a fixed failure surface are expressed in terms of influence lines for the resultant changes in the factor of safety. Of particular importance are the positions where no change in factor of safety is produced. On a slope section these are referred to as "neutral points": the traces of these in plan are termed "neutral lines." These concepts provide valuable guidance on the most effective locations and distributions of corrective cuts and fills, particularly for slides on pre-existing slip surfaces.Stabilization of slides by loading the toe is shown to be generally preferable to unloading the head. In complex slides, corrective cuts and fills are best restricted to the extreme head and toe positions, intermediate cuts or fills being avoided.The conditions are defined under which the flattening of slopes by the removal of material reduces stability. In certain cases such a flattening can occur naturally by the local collapse of the steep toe of a landslide. This can lead to an immediate reduction in its factor of safety and a consequent sudden acceleration. Keywords: Slope stabilization, corrective cuts, corrective fills, influence lines, neutral points, neutral lines, slope flattening.


1988 ◽  
Vol 25 (1) ◽  
pp. 119-127 ◽  
Author(s):  
P. K. Banerjee ◽  
A. S. Kumbhojkar ◽  
N. B. Yousif

A finite element (FE) analysis of the field test excavation in Welland Clay is performed using an anisotropic soil behavior model. This paper describes the model, FE formulation, and transient effective stress stability analysis, and compares FE results with the field measurements. The analysis reflects the postexcavation decrease in the factor of safety with time and predicts the failure of the slope along the observed failure surface. The parametric study shows that the time to failure is a function of the pore pressure boundary conditions at the excavation surface and affects the transient factor of safety. Key words: constitutive relations, excavations, finite element, plasticity models, pore pressure, soil anisotropy, stability.


Sign in / Sign up

Export Citation Format

Share Document