scholarly journals Medicinal Plants as a Drug Alternative Source for the Antigout Therapy in Morocco

Scientifica ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Nour Elhouda Daoudi ◽  
Mohamed Bouhrim ◽  
Hayat Ouassou ◽  
Mohamed Bnouham

Background. The gout is a metabolic disease that is associated with a high level of uric acid in the blood. This disease is treated with some medications that aim to reduce serum urate levels. However, the use of various medicines leads to the appearance of some side effects, hence the importance of using other treatments based on natural resources. Objective. This study presents some medical treatments, their side effects, and some plants that are used for gout management in Morocco in the aim to valorize them. Methods. We have been consulting various English publications in PubMed, Web of Science, and ScienceDirect published between 1991 and 2019 using the following keywords “drugs,” “gout,” “Morocco,” “medicinal plants,” “in vitro,” and “in vivo” terms. Then, we have classified the medicines, according to their action mechanisms, and we have cited some species that were reported in Moroccan pharmacopeia as antigout. Results. Three methods of the gout medical management were cited in this work: xanthine oxidase inhibitors, uric acid excretion enhancer, and uricase recombinant. However, it was found that these treatments had various side effects. We have described 23 species, and some of them showed experimentally an antigout effect by blocking the “xanthine oxidase” enzyme. These plants belong to 11 families. Lamiaceae represents the most dominant family with six species followed by Asteraceae with two species. Colchicine isolated from Colchicum autumnale is the most known compound for its efficiency towards gout. Conclusion. This work summarized different treatments particularly medicinal plants that are used in Morocco to treat gout disease by blocking uric acid secretion. However, several studies are needed to valorize these antigout natural sources.

Planta Medica ◽  
2017 ◽  
Vol 83 (17) ◽  
pp. 1335-1341 ◽  
Author(s):  
Jin Kim ◽  
Woo Kim ◽  
Jung Hyun ◽  
Jong Lee ◽  
Jin Kwon ◽  
...  

AbstractHyperuricemia is a clinical condition characterized by an elevated level of serum uric acid and is a key risk factor for the development of gout and metabolic disorders. The existing urate-lowering therapies are often impractical for certain patient populations, providing a rationale to explore new agents with improved safety and efficacy. Here, we discovered that Salvia plebeia extract inhibited the enzyme activity of xanthine oxidase, which is a key enzyme generating uric acid in the liver. In an animal model of hyperuricemia, S. plebeia extract reduced serum urate to the levels observed in control animals. The urate-lowering effect of S. plebeia extract in vivo was supported by the identification of compounds that inhibit xanthine oxidase enzyme activity in vitro. Nepetin, scutellarein, and luteolin contributed significantly to S. plebeia bioactivity in vitro. These compounds showed the highest potency against xanthine oxidase with IC50 values of 2.35, 1.74, and 1.90 µM, respectively, and were present at moderate quantities. These observations serve as a basis for further elaboration of the S. plebeia extracts for the development of new therapeutics for hyperuricemia and related diseases.


2019 ◽  
Vol 15 (5) ◽  
pp. 465-486 ◽  
Author(s):  
Haifang Chen ◽  
Yun Yao ◽  
Yuan Zhan ◽  
Hui Jian ◽  
Yan Li ◽  
...  

Background: Erding granule (EDG) widely used as an agent with the effect of heat-clearing, detoxifying, eliminating dampness, relieving jaundice and upper respiratory tract disease in clinical application, but the systematic chemical information and anti-hyperuricemia effect of EDG was still unclear. Methods: An ultra-high performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-Q-TOF-MS/MS) method was utilized to rapidly identify the chemical constituents of EDG. The anti-hyperuricemia effect of EDG was evaluated based on the effect on xanthine oxidase inhibitory activity (in vitro) and lowering uric acid (in vivo). Results: 198 compounds were tentatively separated and identified or characterized within 30 min by UHPLC/ESI-Q-TOF MS/MS. These compounds were categorized as 22 coumarins, 38 flavones, 67 alkaloids, 36 organic acids, 16 sesquiterpenes, 14 lignans and 5 the others constituents. Meanwhile, EDG significantly decreases the serum urate level of hyperuricemic mice induced by potassium oxonate, while EDG did not significantly decrease the serum urate level of hyperuricemic mice induced by hypoxanthine and activity of xanthine oxidase in vitro. Conclusion: The method developed was rapid and sensitive to characterize the chemical constituents of EDG, and provide a systematic view of chemical information for EDG. Furthermore, we first discovered the anti-hyperuricemia effect of EDG and it would further provide the reference for clarifying the mechanism of EDG on lowering uric acid.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bibianne Waiganjo ◽  
Gervason Moriasi ◽  
Jared Onyancha ◽  
Nelson Elias ◽  
Francis Muregi

Malaria is a deadly disease caused by a protozoan parasite whose mode of transmission is through a female Anopheles mosquito. It affects persons of all ages; however, pregnant mothers, young children, and the elderly suffer the most due to their dwindled immune state. The currently prescribed antimalarial drugs have been associated with adverse side effects ranging from intolerance to toxicity. Furthermore, the costs associated with conventional approach of managing malaria are arguably high especially for persons living in low-income countries, hence the need for alternative and complementary approaches. Medicinal plants offer a viable alternative because of their few associated side effects, are arguably cheaper, and are easily accessible. Based on the fact that studies involving antimalarial medicinal plants as potential sources of efficacious and cost-effective pharmacotherapies are far between, this research was designed to investigate antiplasmodial and cytotoxic activities of organic and aqueous extracts of selected plants used by Embu traditional medicine practitioners to treat malaria. The studied plants included Erythrina abyssinica (stem bark), Schkuhria pinnata (whole plant), Sterculia africana (stem bark), Terminalia brownii (leaves), Zanthoxylum chalybeum (leaves), Leonotis mollissima (leaves), Carissa edulis (leaves), Tithonia diversifolia (leaves and flowers), and Senna didymobotrya (leaves and pods). In vitro antiplasmodial activity studies of organic and water extracts were carried out against chloroquine-sensitive (D6) and chloroquine-resistance (W2) strains of Plasmodium falciparum. In vivo antiplasmodial studies were done by Peter’s four-day suppression test to test for their in vivo antimalarial activity against P. berghei. Finally, cytotoxic effects and safety of the studied plant extracts were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) rapid calorimetric assay technique. The water and methanolic extracts of T. brownii and S. africana and dichloromethane extracts of E. abyssinica, S. pinnata, and T. diversifolia leaves revealed high in vitro antiplasmodial activities (IC50≤10 μg/ml). Further, moderate in vivo antimalarial activities were observed for water and methanolic extracts of L. mollissima and S. africana and for dichloromethane extracts of E. abyssinica and T. diversifolia leaves. In this study, aqueous extracts of T. brownii and S. africana demonstrated high antiplasmodial activity and high selectivity indices values (SI≥10) and were found to be safe. It was concluded that T. brownii and S. africana aqueous extracts were potent antiplasmodial agents. Further focused studies geared towards isolation of active constituents and determination of in vivo toxicities to ascertain their safety are warranted.


2019 ◽  
Author(s):  
Stefany Marcellia

Kidney stones are a condition where there are stones or crystals in urinary tract (ureter, bladder, kidneys). It’s because of the results of a complex process from several photochemical processes. This situation occurs, because of the accumulation of compounds such as calcium, uric acid, potassium oxalate, or other substances in the form of crystals. Urine that contains these substances will be difficult to filter by the kidneys, which will then settle and potentially become kidney stones. Medications and treatments that have been applied for kidney stones so far such as ESWL, PNL, open surgery and chemical drugs. These treatments need a lot of money and also have side effects. Continuous consumption of chemical drugs can cause other complications and using shock waves will cause damage to the kidneys. Data from in vitro, in vivo, and clinical trials reveal that the use of herbs such as Saxifraga ligulata as an alternative treatment can be useful and have smaller side effects.


2016 ◽  
Vol 7 (10) ◽  
pp. 4239-4246 ◽  
Author(s):  
Jhih-Jia Jhang ◽  
Jia-Wei Ong ◽  
Chi-Cheng Lu ◽  
Chin-Lin Hsu ◽  
Jia-Hong Lin ◽  
...  

Uric acid is a metabolite obtained from purine by xanthine oxidase activity (XO) and high levels of serum uric acid leads to hyperuricemia and gout.


2012 ◽  
Vol 40 (05) ◽  
pp. 979-991 ◽  
Author(s):  
Chien-Wei Hou ◽  
Ying-Chung Lee ◽  
Hsiao-Fang Hung ◽  
Hua-Wen Fu ◽  
Kee-Ching Jeng

Hyperuricemia causes gouty arthritis, kidney disease, heart disease, and other diseases. Xanthine oxidase (XOD) and urate transporters play important roles in urate homeostasis. Numerous plants have been identified as XOD inhibitors. Longan seeds are known to contain high levels of polyphenols such as corilagin, gallic acid and ellagic acid. We examined the effect of longan seed extract on XOD inhibition and urate transporters GLUT1 and GLUT9 using both in vitro and in vivo assays. The results showed that dried longan seed extract (LSE) and its active components inhibited XOD dose-dependently in vitro. LSE inhibited uric acid production and XOD activity in normal liver cells (clone-9 cells) and was not cytotoxic under the concentration of 200 μg/ml. For the in vivo study, Sprague-Dawley (SD) rats were given intraperitoneally for thirty minutes with or without allopurinol (a XOD inhibitor, 3.5 mg/kg) or LSE (80 mg/kg) and then injected intraperitioneally with 250 mg/kg of oxonic acid and 300 mg/kg of hypoxanthine intragastrically. LSE was able to reduce serum uric acid level and XOD activity in hyperuricemic rats. However, LSE or allopurinol did not inhibit the liver XOD activities. On the other hand, GLUT1 protein was suppressed in kidney and GLUT9 was induced in liver from experimental rats and LSE or allopurinol decreased GLUT9 but increased GLUT1 protein level in the liver and kidney, respectively. These results confirmed the claimed effect of longan seeds on gout and other complications and suggested that its urate reducing effect might be due to modulation of urate transporters and inhibition of circulating xanthine oxidase.


Dose-Response ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 155932582110403
Author(s):  
Muhammad Bilal ◽  
Saeed Ahmad ◽  
Tayyeba Rehman ◽  
Aymen Owais Ghauri ◽  
Sana Khalid ◽  
...  

Hyperuricemia is a metabolic disorder with characteristic elevated serum uric acid. Recently, several plant-based medicines are being used for the treatment of hyperuricemia. The study aimed to find the hypouricemic potential of Berberis vulgaris in in-vitro and in-vivo study models. In i n-vitro studies, xanthine oxidase inhibition assay was performed to evaluate IC50 value and capsule absorbance of the drug, respectively. For in-vivo experiment, the study comprised 15 groups of rats. In-vitro results revealed that significant xanthine oxidase inhibition was shown by Berberis vulgaris with an IC50 value of 272.73±.3 μg/mL. Similarly, oral administration of Berberis vulgaris with dosages of 250 and 500 mg/kg decreased serum and liver uric acid levels significantly in a dose- and time-dependent manner in oxonate-induced hyperuricemic rats. Furthermore, 3-day and 7-day administration of Berberis vulgaris showed more potential compared to 1-day administrations. The present study indicated marked hypouricemic effects of Berberis vulgaris in rats. Due to caveat of the small sample size, a firm assumption of the hypouricemic effect of Berberis vulgaris cannot be made. However, extensive study is needed to find out the exact molecular mechanism involved and to translate its effects into clinical trials for the further validation of the results.


Sign in / Sign up

Export Citation Format

Share Document