scholarly journals High-Gain SIR Dual-Band Antenna Based on CSRR-Enhanced SIW for 2.4/5.2/5.8 GHz WLAN

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Caixia Feng ◽  
Yongqiang Kang ◽  
Lijuan Dong ◽  
Lihong Wang

This paper presents a dual-band step impedance resonator (SIR) antenna based on metamaterial-inspired periodic structure of coupled complementary split-ring resonators substrate-integrated waveguide (CSRR-SIW). The antenna supports wireless local area networks (WLAN) bands at 2.4/5.2/5.8 GHz. The CSRRs and two branches of the SIR element are etched on the top and bottom metal surfaces of the substrate. The SIR element produces a fundamental frequency f1 at 2.4 GHz and a second harmonic frequency fs2 at 5.7 GHz. Meanwhile, the CSRRs produces a resonant frequency at high-frequency band around 5.2 GHz, which can be combined with the second harmonic frequency fs2 at 5.7 GHz. The high-frequency bandwidth can then be broadened. The simulated and measured results show that the dual operation bands with bandwidths of 16% from 2.25 GHz to 2.64 GHz and 18.2% from 5 GHz to 6 GHz for |S11| < −10 dB are achieved. Meanwhile, the proposed antenna has peak gains ranging from 6.5 dBi to 7 dBi and from 7 dBi to 7.7 dBi in the lower and upper bands, respectively. Compared with many previously reported dual-band antenna designs, the proposed antenna achieves comparable bandwidth performance and larger gain per unit area with a relatively smaller size. Moreover, the simple structure renders the proposed antenna has the advantage of easy-processable and cost-effective implementation.

2020 ◽  
Vol 20 (1) ◽  
pp. 23-30
Author(s):  
Sulakshana Chilukuri ◽  
Srividya Gundappagari

A compact, wide dual-band antenna designed to resonate at 2.25 GHz and 5.4 GHz is proposed in this paper. The proposed antenna is a monopole rectangular patch designed to operate at 5 GHz. This basic structure is modified by introducing a metamaterial-based interdigital capacitor reactive loading that exhibits dual-band characteristics at 2.25 GHz and 5.4 GHz. A bandwidth greater than 1.4 GHz at the two resonant frequencies is obtained. The compact size of the proposed antenna is 0.0989λ<sub>0</sub> × 0.0498λ<sub>0</sub>, where λ<sub>0</sub> is calculated at the first resonance. The antenna is etched on a FR4 substrate with dielectric constant <i>ɛ</i><sub><i>r</i></sub> = 4.4 and thickness of 1.6 mm. The simulated results exhibit considerable gain and wide impedance bandwidth at the resonant frequencies. Monopole-like radiation patterns are obtained at both the operating frequencies. The designed antenna can be applied in wireless local area networks and Wi-MAX wireless communications.


2021 ◽  
Author(s):  
Hamza Ben Hamadi ◽  
said ghnimi ◽  
Lassaad Latrach ◽  
Philippe Benech ◽  
Ali Gharsallah

Abstract This paper presents the design, simulation and fabrication of a miniaturized wearable dual-band antenna on a semi-flex substrate; she is operable at 2.45/5.8 GHz for wireless local area network applications. The electrical and radiation characteristics of this proposed antenna were obtained by means of a technical of insertion of a slot to tune the operating frequencies. To study the impact of the electromagnetic radiation of the structure of the human body, it is necessary to minimize the back radiation towards the user. Therefore, in this work, a multi-band artificial magnetic conductor (AMC) was placed directly above a dual-band planar inverted F antenna to achieve a miniaturization with excellent radiation performance. The simulation results were designed and simulated using Studio commercial software (CST). A good agreement was achieved between the results of simulation and the experimental. The Comparison of measurement results indicates that the gain improved from 1,84 dB to 3,8 dB, in the lower band, and from 2,4 dB to 4,1 in the upper band, when the antenna is backed by the AMC plane. The front-to-back ratio of the AMC backed PIFA antenna was also enhanced. Then, to ensure that the proposed AMC is harmless to the human body, this prototype was placed on three-layer human tissue cubic model. It was observed that the through inclusion of plane AMC, the peak specific absorption rate (SAR) decreased to 1,45 and 1,1 W/kg at 2,45 and 5.8 GHz, respectively (a reduction of around 3,7 W/kg, compared with an antenna without (AMC).


2018 ◽  
Vol 10 (9) ◽  
pp. 1088-1095
Author(s):  
Smriti Agarwal ◽  
Dharmendra Singh

AbstractIn recent years, millimeter wave (MMW) has received tremendous interest among researchers, which offers systems with high data rate communication, portability, and finer resolution. The design of the antenna at MMWs is challenging as it suffers from fabrication and measurement complexities due to associated smaller dimensions. Current state-of-the-art MMW dual-band antenna techniques demand high precision fabrication, which increases the overall cost of the system. Henceforth, the design of an MMW antenna with fabrication and measurement simplicity is quite challenging. In this paper, a simple coplanar waveguide (CPW) fed single-band MMW antenna operating at 94 GHz (W band) and a dual-band MMW antenna operating concurrently at 60 GHz (V band) and 86 GHz (E band) have been designed, fabricated, and measured. A 50 Ω CPW-to-microstrip transition has also been designed to facilitate probe measurement compatibility and to provide proper feeding to the antenna. The fabricated single frequency 94 GHz antenna shows a fractional bandwidth of 11.2% andE-plane (H-plane) gain 6.17 dBi (6.2 dBi). Furthermore, the designed MMW dual-band antenna shows fractional bandwidth: 2/6.4%, andE-plane (H-plane) gain: 7.29 dBi (7.36 dBi)/8.73 dBi (8.68 dBi) at 60/86 GHz, respectively. The proposed antenna provides a simple and cost-effective solution for different MMW applications.


2019 ◽  
Vol 11 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Priyanka Garg ◽  
Priyanka Jain

AbstractIn this paper, a compact, low-profile, coplanar waveguide-fed metamaterial inspired dual-band microstrip antenna is presented for Wireless Local Area Network (WLAN) application. To achieve the goal a triangular split ring resonator is used along with an open-ended stub. The proposed antenna has a compact size of 20 × 24 mm2 fabricated on an FR-4 epoxy substrate with dielectric constant (εr) 4.4. The antenna provides two distinct bands I from 2.40 to 2.48 GHz and II from 4.7 to 6.04 GHz with reflection coefficient better than −10 dB, covering the entire WLAN (2.4/5.2/5.8 GHz) band spectrum. The performance of the proposed metamaterial inspired antenna is also studied in terms of the radiation pattern, efficiency, and the realized gain. A comparative study is also presented to show the performance of the proposed metamaterial inspired antenna with respect to other conventional antenna structures in terms of overall size, bandwidth, gain, and reflection coefficient. Finally, the antenna is fabricated and tested. The simulated results show good agreement with the measured results.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1732 ◽  
Author(s):  
Mohammad Haerinia ◽  
Sima Noghanian

In this work, a dual-band printed planar antenna, operating at two ultra-high frequency bands (2.5 GHz/4.5 GHz), is proposed for wireless power transfer for wearable applications. The receiving antenna is printed on a Kapton polyimide-based flexible substrate, and the transmitting antenna is on FR-4 substrate. The receiver antenna occupies 2.1 cm 2 area. Antennas were simulated using ANSYS HFSS software and the simulation results are compared with the measurement results.


2014 ◽  
Vol 7 (5) ◽  
pp. 551-556 ◽  
Author(s):  
Churng-Jou Tsai ◽  
Bo-Yuan Tsai

In this paper, a novel and compact center-fed dual-band WiFi printed antenna is presented. This antenna is designed using two different arms which correspond to the oscillation points of the dual band, and uses parasitic capacitance and U-shaped microstrip line to match and control the necessary bandwidth. The measured frequency bandwidth of this antenna is 2.3–2.61 GHz (310 MHz, 12.7%) at 2 GHz, and the high-frequency bandwidth is 4.82–5.84 GHz (1020 MHz, 19.1%) at 5 GHz, which meets the requirements for applications in global WiFi communication. This PCB antenna is double-sided, long, and narrow; its size is 7 × 45.9 × 1 mm3; it can be applied to wireless access point; and it has a near-omni-directional radiation pattern. The design, analysis, and measured results of this proposed antenna will be presented.


2018 ◽  
Vol 7 (3) ◽  
pp. 93-98 ◽  
Author(s):  
B. W. Ngobese ◽  
P. Kumar

This paper presents the design, fabrication and measurement of a high gain 4-elements linear patch array, which uses the corporate feed technique with inset for excitation resonating at 5.216 𝐺𝐻z.  is used as a dielectric substrate for the proposed array structure. The designed array is simulated and optimized by using CST microwave studio software. The element of the array is designed using the transmission-line model equations. The ground plane is made defective by incorporating slots and the reflective ground is utilized to enhance the gain of the array. The simulated and measured results for various parameters of the array are presented. The comparison between simulated and measured results show good agreement with little deviation. The optimized dimensions of the proposed design provides a maximum gain of 9.019 dB and a maximum directivity of 12.81 dBi. The antenna has been designed for the range  which is one of the ranges for  band for wireless local area networks (WLAN) applications as the  standard states.


Sign in / Sign up

Export Citation Format

Share Document