CPW-fed concurrent, dual band planar antenna for millimeter wave applications

2018 ◽  
Vol 10 (9) ◽  
pp. 1088-1095
Author(s):  
Smriti Agarwal ◽  
Dharmendra Singh

AbstractIn recent years, millimeter wave (MMW) has received tremendous interest among researchers, which offers systems with high data rate communication, portability, and finer resolution. The design of the antenna at MMWs is challenging as it suffers from fabrication and measurement complexities due to associated smaller dimensions. Current state-of-the-art MMW dual-band antenna techniques demand high precision fabrication, which increases the overall cost of the system. Henceforth, the design of an MMW antenna with fabrication and measurement simplicity is quite challenging. In this paper, a simple coplanar waveguide (CPW) fed single-band MMW antenna operating at 94 GHz (W band) and a dual-band MMW antenna operating concurrently at 60 GHz (V band) and 86 GHz (E band) have been designed, fabricated, and measured. A 50 Ω CPW-to-microstrip transition has also been designed to facilitate probe measurement compatibility and to provide proper feeding to the antenna. The fabricated single frequency 94 GHz antenna shows a fractional bandwidth of 11.2% andE-plane (H-plane) gain 6.17 dBi (6.2 dBi). Furthermore, the designed MMW dual-band antenna shows fractional bandwidth: 2/6.4%, andE-plane (H-plane) gain: 7.29 dBi (7.36 dBi)/8.73 dBi (8.68 dBi) at 60/86 GHz, respectively. The proposed antenna provides a simple and cost-effective solution for different MMW applications.

2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000050-000053
Author(s):  
Alexander Schulz ◽  
Sven Rentsch ◽  
Lei Xia ◽  
Robert Mueller ◽  
Jens Mueller

This paper presents a low loss fully embedded bandpass filter (BPF) using low temperature co-fired ceramic (LTCC) for multilayer System-in-Package (SiP) and Multi-Chip-Module (MCM) applications, e.g. wireless applications for the unlicensed 60 GHz band. The measured insertion loss was 1.5 dB at the center frequency 58 GHz, and a return loss of less than −10 dB was achieved, including two grounded coplanar waveguide transmission line (CPWg) to stripline transitions. The four layers BPF has a 3 dB bandwidth of about 11 GHz which supplies e.g. broadband and high data rate applications. The whole BPF requires a substrate area of 5.6 × 2.1 × 0.42 mm3 with transitions and a shielding via fence. This BPF suits well for V-band applications in a LTCC package because of the compact dimensions and the good performance.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000191-000198 ◽  
Author(s):  
A. Isapour ◽  
D. Bahloul ◽  
A. B. Kouki

Abstract The wireless telecommunication systems have an undeniable role in today's society. The rapid progress of wireless services and applications accelerates demands for high data-rate reliable systems. The 60 GHz band with its 5 GHz globally unlicensed available spectrum, provides a great opportunity for the next generation of high data-rate wireless communication. Despite this attractive bandwidth surrounding 60 GHz, there are still many challenges to be addressed such as the loss performance and the integration with other systems. Low Temperature Cofired Ceramic (LTCC) technology, with its unique and mature multilayer fabrication process, has excellent capability of realizing miniaturized 3D low loss structures to overcome these challenges. Since, one of the key components in any communication system for both interconnecting and designing components is Low loss transmission lines, in this article we overview the performances and challenges for four different most practical transmission lines at 60 GHz in LTCC: Microstrip, Stripline, Coplanar Waveguide (CPW), and LTCC Integrated Waveguide (LIW).


2018 ◽  
Vol 15 (3) ◽  
pp. 101-106
Author(s):  
Bijan K. Tehrani ◽  
Ryan A. Bahr ◽  
Manos M. Tentzeris

Abstract This article outlines the design, processing, and implementation of inkjet and 3D printing technologies for the development of fully printed, highly integrated millimeter-wave (mm-wave) wireless packages. The materials, tools, and processes of each technology are outlined and justified for their respective purposes. Inkjet-printed 3D interconnects directly interfacing a packaging substrate with an integrated circuit (IC) die are presented using printed dielectric ramps and coplanar waveguide transmission lines exhibiting low loss (.6–.8 dB/mm at 40 GHz). Stereolithography 3D printing is presented for the encapsulation of IC dice, enabling the application-specific integration of on-package structures, including dielectric lenses and frequency selective surface–based wireless filters. Finally, inkjet and 3D printing technology are combined to present sloped mm-wave interconnects through an encapsulant, or through mold vias, achieving a slope of up to 65° and low loss (.5–.6 dB/mm at 60 GHz). The combination of these additive techniques is highlighted for the development of scalable, application-specific wireless packages.


2019 ◽  
Vol 11 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Priyanka Garg ◽  
Priyanka Jain

AbstractIn this paper, a compact, low-profile, coplanar waveguide-fed metamaterial inspired dual-band microstrip antenna is presented for Wireless Local Area Network (WLAN) application. To achieve the goal a triangular split ring resonator is used along with an open-ended stub. The proposed antenna has a compact size of 20 × 24 mm2 fabricated on an FR-4 epoxy substrate with dielectric constant (εr) 4.4. The antenna provides two distinct bands I from 2.40 to 2.48 GHz and II from 4.7 to 6.04 GHz with reflection coefficient better than −10 dB, covering the entire WLAN (2.4/5.2/5.8 GHz) band spectrum. The performance of the proposed metamaterial inspired antenna is also studied in terms of the radiation pattern, efficiency, and the realized gain. A comparative study is also presented to show the performance of the proposed metamaterial inspired antenna with respect to other conventional antenna structures in terms of overall size, bandwidth, gain, and reflection coefficient. Finally, the antenna is fabricated and tested. The simulated results show good agreement with the measured results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
M. Samsuzzaman ◽  
T. Islam ◽  
N. H. Abd Rahman ◽  
M. R. I. Faruque ◽  
J. S. Mandeep

A coplanar waveguide (CPW) fed printing and wide circular slotted, dual band antenna for Wi-Fi/WiMAX applications are presented. The antenna mainly encompasses a ground with a wide circular slot in the centre, a rectangular feeding strip, and two pairs of symmetric planar invertedL(SPIL) strips connecting with the slotted ground. The tuning effects of the rectangular patch, ground size, and SPIL strips to the resonance and matching condition are examined by HFSS and the prototype is fabricated and measured. The simulation and experimental results show that the antenna has an impedance bandwidth with −10 dB reflection coefficients 600 MHz (3.26–3.86 GHz, lower band) and 1040 MHz (5.02–6.26 GHz, upper band), which can cover both the Wi-Fi 5.2/5.5/5.8 GHz and WiMAX 3.3/3.5/3.7/5.8 GHz bands. Moreover, a stable omnidirectional radiation pattern and average peak gain for lower band 3.23 dB and upper band 5.93 dB have been achieved, respectively.


A Fabric antenna is used for on body communications. Millimeter wave antenna consists of small beams with high frequency and high directive improves high data communication. It helps us to reduce the barring between user and communication device. This proposed antenna is designed at 60 GHz. It has mainly integrated with wireless sensor network and medical applications. This antenna is designed with the help of HFSS Software. Later HFSS can be explained in the simulation tool. The aim of the paper is, in human body we will insert cloth sensors to monitor different physiological parameters regardless of the patient location. The information passed instantly to the doctor using an external processing unit. In case of any emergency the patient is alerted through appropriate message or alarms. Designed antenna dimensions are 27.3 mm × 8.5 mm × 0.8 mm. Antenna performance is analyzed by using simulated results of reflection co-efficient, VSWR, gain, bandwidth and directivity.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000252-000257 ◽  
Author(s):  
Bijan K. Tehrani ◽  
Ryan A. Bahr ◽  
Manos M. Tentzeris

Abstract This paper outlines the design, processing, and implementation of inkjet and 3D printing technologies for the development of fully-printed, highly-integrated millimeter-wave (mm-wave) wireless packages. The materials, tools, and processes of each technology are outlined and justified for their respective purposes. Inkjet-printed 3D interconnects directly interfacing a packaging substrate with an IC die are presented using printed dielectric ramps and coplanar waveguide (CPW) transmission lines exhibiting low loss (0.6–0.8 dB/mm at 40 GHz). Stereolithography (SLA) 3D printing is presented for the encapsulation of IC dies, enabling the application-specific integration of on-package structures, including dielectric lenses and frequency selective surface (FSS)-based wireless filters. Finally, inkjet and 3D printing technology are combined to present sloped mm-wave interconnects through an encapsulation, or through-mold vias (TMVs), achieving a slope up to 65° and low loss (0.5–0.6 dB/mm at 60 GHz). The combination of these additive techniques is highlighted for the development of scalable, application-specific wireless packages.


Sign in / Sign up

Export Citation Format

Share Document