scholarly journals Improved Quasiuniform Stability for Fractional Order Neural Nets with Mixed Delay

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Omar Naifar ◽  
Assaad Jmal ◽  
A. M. Nagy ◽  
Abdellatif Ben Makhlouf

In the present paper, a quasiuniform stability result for fractional order neural networks with mixed delay is developed, based on the generalized Gronwall inequality and the Caputo fractional derivative. Sufficient conditions are derived to ensure the quasiuniform stability of the considered neural nets system. A clarification example is carried out not only to validate the authors’ theoretical results but also to show the superiority of the developed work (in terms of improved stability), compared with other similar works already published in the literature.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Weiwei Zhang ◽  
Jinde Cao ◽  
Ahmed Alsaedi ◽  
Fuad E. Alsaadi

Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order α, 0<α≤1/2 and 1/2<α<1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality skills, two sufficient conditions are considered to ensure synchronization of fractional-order delayed neural networks in a finite-time interval. Numerical example is given to verify the feasibility of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Shuo Zhang ◽  
Yongguang Yu ◽  
Wei Hu

The issue of robust stability for fractional-order Hopfield neural networks with parameter uncertainties is investigated in this paper. For such neural system, its existence, uniqueness, and global Mittag-Leffler stability of the equilibrium point are analyzed by employing suitable Lyapunov functionals. Based on the fractional-order Lyapunov direct method, the sufficient conditions are proposed for the robust stability of the studied networks. Moreover, robust synchronization and quasi-synchronization between the class of neural networks are discussed. Furthermore, some numerical examples are given to show the effectiveness of our obtained theoretical results.


2021 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
M. Syed Ali ◽  
M. Hymavathi ◽  
Syeda Asma Kauser ◽  
Grienggrai Rajchakit ◽  
Porpattama Hammachukiattikul ◽  
...  

This article examines the drive-response synchronization of a class of fractional order uncertain BAM (Bidirectional Associative Memory) competitive neural networks. By using the differential inclusions theory, and constructing a proper Lyapunov-Krasovskii functional, novel sufficient conditions are obtained to achieve global asymptotic stability of fractional order uncertain BAM competitive neural networks. This novel approach is based on the linear matrix inequality (LMI) technique and the derived conditions are easy to verify via the LMI toolbox. Moreover, numerical examples are presented to show the feasibility and effectiveness of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wenli Zhu ◽  
Jiexiang Huang ◽  
Xinfeng Ruan ◽  
Zhao Zhao

This paper focuses on a class of stochastic differential equations with mixed delay based on Lyapunov stability theory, Itô formula, stochastic analysis, and inequality technique. A sufficient condition for existence and uniqueness of the adapted solution to such systems is established by employing fixed point theorem. Some sufficient conditions of exponential stability and corollaries for such systems are obtained by using Lyapunov function. By utilizing Doob’s martingale inequality and Borel-Cantelli lemma, it is shown that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. In particular, our theoretical results show that if stochastic differential equation is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic differential equation with mixed delay will remain exponentially stable. Moreover, time delay upper limit is solved by using our theoretical results when the system is exponentially stable, and they are more easily verified and applied in practice.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


2017 ◽  
Vol 22 (4) ◽  
pp. 503-513 ◽  
Author(s):  
Fei Wang ◽  
Yongqing Yang

This paper investigates fractional order Barbalat’s lemma and its applications for the stability of fractional order nonlinear systems with Caputo fractional derivative at first. Then, based on the relationship between Caputo fractional derivative and Riemann-Liouville fractional derivative, fractional order Barbalat’s lemma with Riemann-Liouville derivative is derived. Furthermore, according to these results, a set of new formulations of Lyapunov-like lemmas for fractional order nonlinear systems are established. Finally, an example is presented to verify the theoretical results in this paper.


2017 ◽  
Vol 31 (05) ◽  
pp. 1750031 ◽  
Author(s):  
Jiyang Chen ◽  
Chuandong Li ◽  
Tingwen Huang ◽  
Xujun Yang

In this paper, the memristor-based fractional-order neural networks (MFNN) with delay and with two types of stabilizing control are described in detail. Based on the Lyapunov direct method, the theories of set-value maps, differential inclusions and comparison principle, some sufficient conditions and assumptions for global stabilization of this neural network model are established. Finally, two numerical examples are presented to demonstrate the effectiveness and practicability of the obtained results.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Lin Wang ◽  
Chunzhi Yang

Synchronization problem for a class of uncertain fractional order chaotic systems is studied. Some fundamental lemmas are given to show the boundedness of a complicated infinite series which is produced by differentiating a quadratic Lyapunov function with fractional order. By using the fractional order extension of the Lyapunov stability criterion and the proposed lemma, stability of the closed-loop system is analyzed, and two sufficient conditions, which can enable the synchronization error to converge to zero asymptotically, are driven. Finally, an illustrative example is presented to confirm the proposed theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Min Cao ◽  
Xun-Wu Yin ◽  
Wen-He Song ◽  
Xue-Mei Sun ◽  
Cheng-Dong Yang ◽  
...  

In this paper, we devote to the investigation of passivity in two types of coupled stochastic neural networks (CSNNs) with multiweights and incompatible input and output dimensions. First, some new definitions of passivity are proposed for stochastic systems that may have incompatible input and output dimensions. By utilizing stochastic analysis techniques and Lyapunov functional method, several sufficient conditions are respectively developed for ensuring that CSNNs without and with multiple delay couplings can realize passivity. Besides, the synchronization criteria for CSNNs with multiweights are established by employing the results of output-strictly passivity. Finally, two simulation examples are given to illustrate the validity of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document