scholarly journals Evaluation and Design of Power Controller of Two-Axis Solar Tracking by PID and FL for a Photovoltaic Module

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Joel J. Ontiveros ◽  
Carlos D. Ávalos ◽  
Faustino Loza ◽  
Néstor D. Galán ◽  
Guillermo J. Rubio

Solar trackers represent an essential tool to increase the energy production of photovoltaic modules compared to fixed systems. Unlike previous technologies where the aim is to keep the solar rays perpendicular to the surface of the module and obtain a constant output power, this paper proposes the design and evaluation of two controllers for a two-axis solar tracker, which maintains the power that is produced by photovoltaic modules at their nominal value. To achieve this, mathematical models of the dynamics of the sun, the solar energy obtained on the Earth’s surface, the two-axis tracking system in its electrical and mechanical parts, and the solar cell are developed and simulated. Two controllers are designed to be evaluated in the solar tracking system, one Proportional-Integral-Derivative and the other by Fuzzy Logic. The evaluation of the simulations shows a better performance of the controller by Fuzzy Logic; this is because it presents a shorter stabilization time, a transient of smaller amplitude, and a lower percentage of error in steady-state. The principle of operation of the solar tracking system is to promote the orientation conditions of the photovoltaic module to generate the maximum available power until reaching the nominal one. This is possible because it has a gyroscope on the surface of the module that determines its position with respect to the hour angle and altitude of the sun; a data acquisition card is developed to implement voltage and current sensors, which measure the output power it produces from the photovoltaic module throughout the day and under any weather conditions. The results of the implementation demonstrate that a Fuzzy Logic control for a two-axis solar tracker maintains the output power of the photovoltaic module at its nominal parameters during peak sun hours.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3308-3311

This paper presents the outline and execution of simple, easy and cheaper automatic dual axis solar tracking system using Arduino UNO as the control element and light detecting sensors (LDRS) as the sensing element. This project involves advanced level of technology to capture maximum amount of energy using sun’s radiations. The main purpose is to increase the efficiency of tracking system which can rotate in all four directions continuously according to intensity of radiations and for energy conversion. In this, the voltage from panel is calculated from time to time in an interval of 1hr and this voltage is used to sense the weather conditions and display the climatic temperatures


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5226
Author(s):  
Nurzhigit Kuttybay ◽  
Ahmet Saymbetov ◽  
Saad Mekhilef ◽  
Madiyar Nurgaliyev ◽  
Didar Tukymbekov ◽  
...  

Improving the efficiency of solar panels is the main task of solar energy generation. One of the methods is a solar tracking system. One of the most important parameters of tracking systems is a precise orientation to the Sun. In this paper, the performance of single-axis solar trackers based on schedule and light dependent resistor (LDR) photosensors, as well as a stationary photovoltaic installation in various weather conditions, were compared. A comparative analysis of the operation of a manufactured schedule solar tracker and an LDR solar tracker in different weather conditions was performed; in addition, a simple method for determining the rotation angle of a solar tracker based on the encoder was proposed. Finally, the performance of the manufactured solar trackers was calculated, taking into account various weather conditions for one year. The proposed single-axis solar tracker based on schedule showed better results in cloudy and rainy weather conditions. The obtained results can be used for designing solar trackers in areas with a variable climate.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Rahate Ahmed ◽  
Yeongmin Kim ◽  
Zeeshan ◽  
Muhammad Uzair Mehmood ◽  
Hyun Joo Han ◽  
...  

Abstract A strategy for precise solar tracking has been developed using feedback signals from seven photosensors in conjunction with the operation of an active daylighting system. The tracking system was composed of a microcontroller, two stepper motors, photosensors, a grooves-in Fresnel lens concentrator, and a glass optical fiber cable. A robust control was implemented using cadmium sulfide (CdS) sensors to track the sun’s path precisely from sunrise to sunset. To avoid the cloud effect, two separate sensors were installed apart from the main tracking sensors. The control system was allowed to track the sun’s position if clouds covered the sky continuously for less than approximately 70 min. To analyze the performance of the solar tracker for daylighting applications, a series of experiments were performed in different weather conditions where the accuracy and effectiveness of the present solar tracking control were confirmed.


2019 ◽  
Vol 9 (16) ◽  
pp. 3392 ◽  
Author(s):  
Henrik Zsiborács ◽  
Nóra Hegedűsné Baranyai ◽  
András Vincze ◽  
István Háber ◽  
Philipp Weihs ◽  
...  

This article examines the positioning features of polycrystalline, monocrystalline, and amorphous silicon modules relative to the focus points of concentrator photovoltaic modules under real meteorological conditions using a dual tracking system. The performance of the photovoltaic modules mounted on a dual-axis tracking system was regarded as a function of module orientation where the modules were moved step by step up to a point where their inclination differed by 30° compared to the ideal focus point position of the reference concentrator photovoltaic module. The inclination difference relative to the ideal focus point position was determined by the perfect perpendicularity to the rays of the sun. Technology-specific results show the accuracy of a sun tracking photovoltaic system that is required to keep the loss in power yield below a defined level. The loss in power yield, determined as a function of the measurement results, also showed that the performance insensitivity thresholds of the monocrystalline, polycrystalline, and amorphous silicon modules depended on the direction of the alignment changes. The performance deviations showed clear azimuth dependence. Changing the tilt of the modules towards north and south showed little changes in results, but inclination changes towards northwest, southwest, southeast, and northeast produced results diverging more markedly from each other. These results may make the planning of solar tracking sensor investments easier and help with the estimate calculations of the total investment and operational costs and their return concerning monocrystalline, polycrystalline, and amorphous silicon photovoltaic systems. The results also provide guidance for the tracking error values of the solar tracking sensor.


Author(s):  
Abhishek Kumar Tripathi ◽  
Mangalpady Aruna ◽  
Ch. S.N. Murthy

Solar Photovoltaic (PV) energy conversion has gained much attention nowadays. The output power of PV panel depends on the condition under which the panel is working, such as solar radiation, ambient temperature, dust, wind speed and humidity. The amount of falling sunlight on the panel surface (i.e., solar radiation) directly affects its output power. In order to maximize the amount of falling sunlight on the panel surface, a solar tracking PV panel system is introduced. This paper describes the design, development and fabrication of the solar PV panel tracking system. The designed solar tracking system is able to track the position of the sun throughout the day, which allows more sunlight falling on the panel surface. The experimental results show that there was an enhancement of up to a 64.72% in the output power of the PV panel with reference to the fixed orientation PV panel. Further, this study also demonstrates that the full load torque of the tracking system would be much higher than the obtained torque, which is required to track the position of the sun. This propounds, that the proposed tracking system can also be used for a higher capacity PV power generation system.


2015 ◽  
Vol 77 (17) ◽  
Author(s):  
Azwaan Zakariah ◽  
Mahdi Faramarzi ◽  
Jasrul Jamani Jamian ◽  
Mohd Amri Md Yunus

Nowadays, renewable energy such as solar power has become important for electricity generation, and solar power systems have been installed in homes. Furthermore, solar tracking systems are being continuously improved by researchers around the world, who focus on achieving the best design and thus maximizing the efficiency of the solar power system. In this project, a fuzzy logic controller has been integrated and implemented in a medium-scale solar tracking system to achieve the best real-time orientation of a solar PV panel toward the sun. This project utilized dual-axis solar tracking with a fuzzy logic intelligent method. The hardware system consists of an Arduino UNO microcontroller as the main controller and Light Dependent Resistor (LDR) sensors for sensing the maximum incident intensity of solar irradiance. Initially, two power window motors (one for the horizontal axis and the other for the vertical axis) coordinate and alternately rotate to scan the position of the sun. Since the sun changes its position all the time, the LDR sensors detect its position at five-minute intervals through the level of incident solar irradiance intensity measured by them. The fuzzy logic controller helps the microcontroller to give the best inference concerning the direction to which the solar PV panel should rotate and the position in which it should stay. In conclusion, the solar tracking system delivers high efficiency of output power with a low power intake while it operates.


Author(s):  
Kanhaiya Kumar ◽  
Lokesh Varshney ◽  
A. Ambikapathy ◽  
Vrinda Mittal ◽  
Sachin Prakash ◽  
...  

<p>The significance of the solar energy is to intensify the effectiveness of the Solar Panel with the use of a primordial solar tracking system. Here we propounded a solar positioning system with the use of the global positioning system (GPS) , artificial neural network (ANN) and image processing (IP) . The azimuth angle of the sun is evaluated using GPS which provide latitude, date, longitude and time. The image processing used to find sun image through which centroid of sun is calculated and finally by comparing the centroid of sun with GPS quadrate to achieve optimum tracking point. Weather conditions and situation observed through AI decision making with the help of IP algorithms. The presented advance adaptation is analyzed and established via experimental effects which might be made available on the memory of the cloud carrier for systematization. The proposed system improve power gain by 59.21% and 10.32% compare to stable system (SS) and two-axis solar following system (TASF) respectively. The reduced tracking error of IoT based Two-axis solar following system (IoT-TASF) reduces their azimuth angle error by 0.20 degree.</p>


2020 ◽  
Vol 12 (01) ◽  
pp. 32-37
Author(s):  
Abbas F. Nori ◽  
◽  
Faisel G. Mohammed

In this work comparison between the results of the first systems is a fixed solar and the second is the sun tracking in an attempt to increase the proportion of electricity production. Here a microcontroller (Arduino) and the light-dependent resistor (LDR) photo detector is used in this tracker. And then compare the results in different weather conditions and on different days to test the efficiency of the two systems. The efficiency of the tracking system is better than the fixed system by 12.3% on a sunny day and 4.9% on a partly cloudy day. However, it failed by 3.3% on a cloudy day. With a sunny day preference in the tracking system at 6.9% of partially cloudy days, and 12.1% with partially cloudy to a cloudy day. And verified from The efficiency of the work of the microcontroller (Arduino) system and the optical detector (LDR).


Author(s):  
Saman Sarkawt Jaafar ◽  
Farhad Muhsin Mahmood

This paper is regarding design and program an Micro-controller Arduino Uno board by using Arduino software to work as a photo-sensor(Active) single axial solar tracker system(SASTS). A solar panel, two photo-resistors (LDR) in two sides (north/south) of the photo-voltaic(PV) and a servo motor are connected to the Uno board, which is running a code that prepared by Arduino software IDE in advanced then it works as a tracking system. Here, the LDRs send the signal of presence or absence of the light to the board and based on that sent signal the Uno reflects a new signal to the servo motor to rotate and finds the light source. Lastly, the photo-sensor single axis tracker is made while Continuously, the system tries to face the panel to the sun and whilst changing the irradiance intensity it starts searching to find the angle of highest irradiance. Based on results that are extracted from the data, the tracker system significantly boosts the output efficiency of the solar panel. By using the Micro-controller Uno board, LDRs, servo motor and special designed mechanical base, the tracking system is constructed, based on acquired data the influence of the STS on the increasing the solar panel efficiency is more obvious. Significantly, the tracker system rises the efficiency of the PV .


Author(s):  
Louis Tersoo Abiem ◽  
Clement Olufemi Akoshile ◽  
Taiye Benjamin Ajibola

A solar tracker is a system that is used for the mechanical orientation of solar payloads (collectors and photovoltaic panels) towards the sun. A simple, low-cost, but effective open-loop dual axis solar tracking system was developed in this work. The tracker is an embedded system that consists of a microcontroller integrated with other components in an electronic circuit to coordinate the activities of the circuit in driving out and in the motor shafts of electrically powered linear actuators used to move the payload. The work is divided into two parts: hardware and software. The hardware part consists of two movable (tilting and axial moving) rectangular frames fixed together and used to hold the payload and two electrically powered linear actuators (jacks) used to move the rectangular frames in the tilting and axial directions. The software part was a code written in the C programming language following an algorithm developed from measured parameters of the jacks and the sun’s position and embedded into a microcontroller. The testing of the dual-axis solar tracker was done by measuring a parabolic trough collector’s position with respect to the sun hour angles and solar declination angles and comparing the values with the calculated angles for two days. The results obtained showed that the tracker followed the sun with deviation of ±2o (percentage errors that ranged between 0.01% and 3.26%).


Sign in / Sign up

Export Citation Format

Share Document