scholarly journals Study on the Measurement Method of the Crack Local Flexibility of the Beam Structure

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yumin He ◽  
Siyu Guo ◽  
Xiaolong Zhang

The crack which appears in the structure can be described by a local flexibility. With the occurrence and propagation of crack, the local flexibility will change. The change can effectively reflect the damage degree of the structure. In this paper, the measurement method of the crack local flexibility of the beam structure is presented. Firstly, a series of sample points are selected at the crack location and the possible value range of the crack local flexibility, and then these sample points are used as input parameters for the dynamic analysis of the beam structure. The vibration equation of beam structure is solved, and the frequency influence surface is drawn. In addition, the vibration signal of the beam is tested, and the first three order natural frequencies can be obtained. Thirdly, these frequencies measured are adopted to cut the natural frequency influence surfaces, and then the first three order natural frequency influence curves are drawn. The intersection points of these frequencies influence curves can indicate the crack local flexibility and the corresponding crack location. This method is suitable for measuring the local flexibility of crack with different shapes and types in the beam structure which have various cross sections.

2012 ◽  
Vol 193-194 ◽  
pp. 1342-1345
Author(s):  
Mao Jiang ◽  
Ling Zhou ◽  
Ying Tao Li ◽  
Hai Qing Zhou ◽  
Jun Shao

In order to explore the effective damage identification method for structure, the structural vibration signal is directly correlation dimension analyzed according to fractal theory, and structural damage is identified by measuring the singularity in system output, then the method for structural damage identification based on correlation dimension of vibration response is proposed. The damage analysis results of a simply supported beam demonstrate that, the proposed method can accurately detect single and multi different degree damage’s location of beam structure, and alteration of correlation dimension will increase along with the damage degree


2014 ◽  
Vol 548-549 ◽  
pp. 1728-1734
Author(s):  
D.N. Thatoi ◽  
S. Choudhury ◽  
P.K. Jena ◽  
H.C. Das ◽  
A.K. Subudhi

The current proposed method has been developed using particle swarm optimization (PSO) technique. A single transverse open edge crack on a beam structure has been modeled using local flexibility matrix to determine natural frequencies. The PSO is a population based; bio-inspired evolutionary optimization algorithm that has been implemented for detection of crack. The frequencies obtained from analytical method have been used to train the PSO to get the desired output such as; relative crack depth and relative crack location. Mathematical modeling of the cracked beam structure is being done to ensure the integrity of the above algorithms. The results from the PSO show that both the size and location of the crack can be predicted efficiently through the proposed PSO.


2000 ◽  
Author(s):  
Arnoldo Garcia ◽  
Arnold Lumsdaine ◽  
Ying X. Yao

Abstract Many studies have been performed to analyze the natural frequency of beams undergoing both flexural and torsional loading. For example, Adam (1999) analyzed a beam with open cross-sections under forced vibration. Although the exact natural frequency equation is available in literature (Lumsdaine et al), to the authors’ knowledge, a beam with an intermediate mass and support has not been considered. The models are then compared with an approximate closed form solution for the natural frequency. The closed form equation is developed using energy methods. Results show that the closed form equation is within 2% percent when compared to the transcendental natural frequency equation.


This article presents a critical review of recent research done on crack identification and localization in structural beams using numerical and experimental modal analysis. Crack identification and localization in beams are very crucial in various engineering applications such as ship propeller shafts, aircraft wings, gantry cranes, and Turbo machinery blades. It is necessary to identify the damage in time; otherwise, there may be serious consequences like a catastrophic failure of the engineering structures. Experimental modal analysis is used to study the vibration characteristics of structures like natural frequency, damping and mode shapes. The modal parameters like natural frequency and mode shapes of undamaged and damaged beams are different. Based on this reason, structural damage can be detected, especially in beams. From the review of various research papers, it is identified that a lot of the research done on beams with open transverse crack. Crack location is identified by tracking variation in natural frequencies of a healthy and cracked beam


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wojciech Maliga ◽  
Włodzimierz Dudziński ◽  
Magdalena Łabowska ◽  
Jerzy Detyna ◽  
Marcin Łopusiewicz ◽  
...  

Abstract Objectives The paper presents preliminary results on the assessment of algorithms used in image processing of the grain damage degree. The purpose of the work is developing a tool allowing to analyse sample cross-sections of rye germs. Methods The analysis of the grain cross-sections was carried out on the basis of a series their photos taken at equal time intervals at a set depth. The cross-sections will be used to create additional virtual cross-sections allowing to analyse the whole sample volume. The ultimate plan is to generate two cross-sections perpendicular to each other. Based on volumetric data read from the sample section, a three-dimensional model of an object will be generated. Results The analysis of model surface will allowed us to detect possible grain damage. The developed method of preparing the research material and the proprietary application allowed for the identification of internal defects in the biological material (cereal grains). Conclusions The presented methodology may be used in the agri-food industry in the future. However, much research remains to be done. These works should primarily aim at significantly reducing the time-consuming nature of individual stages, as well as improving the quality of the reconstructed image.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Hui Long ◽  
Yilun Liu ◽  
Changzheng Huang ◽  
Weihui Wu ◽  
Zhaojun Li

A new model is presented for studying the effects of crack parameters on the dynamics of a cracked beam structure. The model is established by the finite element displacement method. In particular, the stiffness matrix of the cracked beam element is firstly derived by the displacement method, which does not need the flexibility matrix inversion calculation compared with the previous local flexibility approaches based on the force method. Starting with a finite element model of cracked beam element, the equation of strain energy of a cracked beam element is formed by the displacement method combined with the linear fracture mechanics. Then, based on the finite element method, the dynamic model of the cracked beam structure is obtained. The results show that the dynamic model discovers the internal relation between the dynamic characteristics of cracked beam structure and structural parameters, material parameters, and crack parameters. Finally, an example is presented to validate the proposed dynamic model.


2018 ◽  
Vol 195 ◽  
pp. 02031 ◽  
Author(s):  
Shota Kiryu ◽  
Ay Lie Han ◽  
Ilham Nurhuda ◽  
Buntara S. Gan

Owing to continuously changing strength moduli properties, functionally graded concrete (FGC) has remarkable advantages over the traditional homogeneous concrete materials regarding cement optimization. Some researchers have studied mechanical behaviors and production methodologies. Problems arise as to how to incorporate the effects of the non-homogeneity of concrete strengths in the analysis for design. For a steel Reinforced Functionally Graded Concrete (RFGC) beam structure, the associated boundary conditions at both ends have to be at the neutral axis position after the occurrence of the presumed cracks. Because the neutral axis is no longer at the mid-plane of the beam crosssection, an iterative procedure has to be implemented. The procedure is somewhat complicated since the strength of the beam cross section has to be integrated due to the non-homogeneity in concrete strengths. This paper proposes an analytical procedure that is very straightforward and simple in concept, but accurate in designing the steel reinforced functionally graded concrete beam cross-sections.


1992 ◽  
Vol 114 (2) ◽  
pp. 171-177 ◽  
Author(s):  
K. R. Collins ◽  
R. H. Plaut ◽  
J. Wauer

Longitudinal vibrations of a cantilevered bar with a transverse crack are investigated. For undamped, unforced vibrations, frequency spectra are computed and the effects of the crack location and compliance on the fundamental natural frequency are determined. For vibrations caused by a distributed, longitudinal, harmonic force, the steady-state amplitude of motion of the free end is plotted as a function of the forcing frequency, crack location, and crack compliance, and frequency spectra are also obtained. Results for a breathing crack are compared to those for a crack which remains open and those for an uncracked bar.


Author(s):  
Guillaume Helbert ◽  
Aleksandr Volkov ◽  
Margarita Evard ◽  
Lamine Dieng ◽  
Shabnam Arbab Chirani

Superelastic Shape Memory Alloys (SMAs) provide a high damping capacity due to the hysteretic motion of the inter-phase boundaries during the martensitic transformation. They have demonstrated their ability to control vibrations of SMA-based Civil Engineering and Aerospace structures. In order to improve existing damping devices, characterization of SMA damping capacity is necessary, despite the lack of a standard procedure. Classical characterizations such as tensile or torsion tests on SMA samples are very attractive, the fact that they are common and simple to process. Furthermore, environment and loading conditions are quite easy to control. Different energy-based formulations have been proposed in the literature to explicitly predict SMA damping capacity from the hysteretic mechanical behaviour. The aim of this paper is to classify commonly used formulations from the literature, using a new thermomechanical vibration numerical model of a SMA beam structure. Thus, three energy-based predictions of SMA intrinsic damping ratio measured at the material scale are compared to the damping ratio measured from the free vibration signal at the SMA beam structure scale, taken as the objective reference. The formulation proposed by Piedbœuf and Gauvin provided a better match in three study-cases.


Sign in / Sign up

Export Citation Format

Share Document