scholarly journals Transition Threshold of Granite Mechanical Characteristics at High Temperature

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Dapeng Liu

No unified criterion exists for the transition threshold of rock mechanical characteristics. We combine rock stress-strain curves to propose an increment ratio of axial pressure based on uniaxial compression tests on granite at high temperature. The behavior of the increment ratio of strain, elastic modulus, Poisson’s ratio, and energy with axial pressure is analyzed, and the following conclusions are drawn. (1) High temperatures aggravate rock deterioration, reduce failure strength, and enhance ductility characteristics. (2) Under loading, the compression-to-elasticity and elasticity-to-plasticity transition thresholds for rock occur, respectively, at 20%–35% and 75%–80% stress levels at temperatures of 25–800°C. (3) The source data for calculating rock deformation parameters or unloading points for unloading tests can be selected over the stress level range of 35%–75%.

2021 ◽  
Vol 13 (9) ◽  
pp. 5026
Author(s):  
Gyeong-o Kang ◽  
Jung-goo Kang ◽  
Jin-young Kim ◽  
Young-sang Kim

The aim of this study was to investigate the mechanical characteristics, microstructural properties, and environmental impact of basic oxygen furnace (BOF) slag-treated clay in South Korea. Mechanical characteristics were determined via the expansion, vane shear, and unconfined compression tests according to various curing times. Scanning electron microscopy was conducted to analyze microstructural properties. Furthermore, environmental impacts were evaluated by the leaching test and pH measurements. According to the results, at the early curing stage (within 15 h), the free lime (F-CaO) content of the BOF slag is a significant factor for developing the strength of the adopted sample. However, the particle size of the BOF slag influences the increase in the strength at subsequent curing times. It was inferred that the strength behavior of the sample exhibits three phases depending on various incremental strength ratios. The expansion magnitude of the adopted samples is influenced by the F-CaO content and also the particle size of the BOF slag. Regarding the microstructural properties, the presence of reticulation structures in the amorphous gels with intergrowths of rod-like ettringite formation was verified inside the sample. Finally, the pH values and heavy metal leachates of the samples were determined within the compatible ranges of the threshold effect levels in the marine sediments of the marine environment standard of the Republic of Korea.


2015 ◽  
Vol 771 ◽  
pp. 104-107
Author(s):  
Riska Ekawita ◽  
Hasbullah Nawir ◽  
Suprijadi ◽  
Khairurrijal

An unconsolidated undrained (UU) test is one type of triaxial compression tests based on the nature of loading and drainage conditions. In order to imitate the UU triaxial compression tests, a UU triaxial emulator with a graphical user interface (GUI) was developed. It has 5 deformation sensors (4 radial deformations and one vertical deformation) and one axial pressure sensor. In addition, other inputs of the emulator are the cell pressure, the height of sample, and the diameter of sample, which are provided by the user. The emulator also facilitates the analysis and storage of measurement data. Deformation data fed to the emulator were obtained from real measurements [H. Nawir, Viscous effects on yielding characteristics of sand in triaxial compression, Dissertation, Civil Eng. Dept., The University of Tokyo, 2002]. Using the measurement data, the stress vs radial strain, stress vs vertical strain, and Mohr-Coulomb circle curves were obtained and displayed by the emulator.


2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Anhua Xu ◽  
Pengcheng Wang ◽  
Jianhong Fang

The distribution of chlorine saline soils is extensive in Haixi region of Qinghai Province in Northwest China. Its natural and geographical conditions are unique, and the external environment varies greatly. To study the effects of variable external environment on the mechanical characteristics of chlorine saline soils, a number of unconsolidated undrained (UU) dynamic triaxial tests under different confining pressure, moisture content, and loading frequency were carried out. The dynamic stress–dynamic strain, failure strength, dynamic elastic modulus, and parameter of shear strength were analyzed. The triaxial test results demonstrated that the stress–strain curves of the soil were strain-hardening. The failure strength and dynamic elastic modulus increased with the increasing of confining pressure; the law with moisture content and loading frequency were inconsistent. The dynamic cohesion and dynamic friction angle increased with the increasing of loading frequency, but decreased with the increasing of moisture content. Besides, the significance analysis theory was used to analyze the effect degree of different factors. It found that the effects of confining pressure, loading frequency, and the interaction between confining pressure and frequency on mechanical characteristics were significant, but the moisture content had less effect.


2021 ◽  
Vol 233 ◽  
pp. 03022
Author(s):  
Yucheng LI ◽  
Wei WANG ◽  
Xing WANG

The research on the mechanical characteristics of concrete-filled steel tubular composite frame under high temperature fire environment is one of the research hotspots. In this paper, the finite element simulation software is used to analyze the concrete-filled steel tubular composite frame structure. The failure mode of the flexural deformation of the composite frame structure under high temperature fire environment is introduced. The simulation results of the deformation and displacement of the single-layer single span and two-layer two-span composite frame structure are deeply studied, including the different temperature field, structural field, structural field of each beam and column The results show that: with the temperature rising, the horizontal plastic strain, vertical displacement and local plastic region of beam and column are redistributed and changed in high temperature fire environment, and the flexural effect of two-story two-span concrete-filled steel tubular composite frame under different fire positions is analyzed. The results show that: with the temperature rising, the horizontal plastic strain at the concentrated load is not the results show that the deflection and deformation redistribution are obvious, and the deflection and deformation redistribution are obvious at the joint points of beams and columns. Finally, a mechanism is formed and destroyed. The flexure effect of mode 1 is larger than that of condition 2, which indicates that the flexural effect of two-story two span CFST composite frame under full cross-section fire is larger than that of condition 2 It should be better. The research results can provide reference value for the reinforcement and repair of CFST composite frame under high temperature fire.


2013 ◽  
Vol 554-557 ◽  
pp. 1224-1231 ◽  
Author(s):  
Cecilia Poletti ◽  
Martina Dikovits ◽  
Javier Ruete

Low alloyed steels produced by continuous casting are thermomechanically treated to achieve final high mechanical properties, meaning a good combination of strength and toughness. The hot deformation mechanisms of a micro-alloyed steel containing up to 0.1wt% of V is studied by means of hot compression tests using a Gleeble®3800 device. Austenitization of samples is carried out at 1150°C during 2 minutes followed by cooling to the deformation temperature at 1Ks-1in the range of 750 – 1150°C. The studied strain rate range is from 0.01 to 80 s-1and the total true strain achieved is of 0.7. In situ water quenching is applied after the deformation to freeze the microstructure and avoid any post dynamic effect. The Ar3temperature is determined by dilatometry experiments to be 725°C for the used cooling rate. The stress values obtained from the compression tests are evaluated at different strains to determine the strain rate sensitivity and flow instability maps and thus, to predict the formability of the material in the range of studied deformation parameters. These maps are correlated to the microstructure at specific deformation parameters.


2018 ◽  
Vol 941 ◽  
pp. 1198-1202
Author(s):  
Dong Keun Han ◽  
Min Soo Park ◽  
Han Sang Kwon ◽  
Kwon Hoo Kim

In previous study, it was investigated texture formation behaviour of high-temperature plane strain compression test at 723K, under a strain rate of 5.0. It was found that the main texture component and it was sharpness vary depending on deformation conditions. To clarify the characteristic of texture formation behaviour, it is necessary to investigate at various deformation condition. Therefore, in this study, is investigating the influence or texture formation behaviour and strain, strain rate at 673K. Three kinds of specimens with different initial textures were machined out from a rolled plate having a <0001> texture. The plane strain compression tests were conducted at a temperature 673K, and a strain rate of 5.0, with strain between-0.4 to-1.0. After compression tests, the specimens were immediately quenched in oil. The texture evolution was conducted by the Schulz reflection method using Cu Kα radiation and EBSD. Before the deformation, {0001} of specimen A was accumulated in the center of pole figure. The {0001} of specimen B was accumulated at the RD direction. The {0001} of specimen C was accumulated TD direction. As a result, work softening is observed in all the cases at the true stress – true strain curve for three types of specimens. After deformation, the maximum pole density of increases with increasing strain. In this study, it was found that the stable orientation was (0001)<100> and (0001)<110> during deformation.


Sign in / Sign up

Export Citation Format

Share Document