scholarly journals Long-Range Scalar Forces in Five-Dimensional General Relativity

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
L. L. Williams

We present new results regarding the long-range scalar field that emerges from the classical Kaluza unification of general relativity and electromagnetism. The Kaluza framework reproduces known physics exactly when the scalar field goes to one, so we studied perturbations of the scalar field around unity, as is done for gravity in the Newtonian limit of general relativity. A suite of interesting phenomena unknown to the Kaluza literature is revealed: planetary masses are clothed in scalar field, which contributes 25% of the mass-energy of the clothed mass; the scalar potential around a planet is positive, compared with the negative gravitational potential; at laboratory scales, the scalar charge which couples to the scalar field is quadratic in electric charge; a new length scale of physics is encountered for the static scalar field around an electrically-charged mass, L s = μ 0 Q 2 / M ; the scalar charge of elementary particles is proportional to the electric charge, making the scalar force indistinguishable from the atomic electric force. An unduly strong electrogravitic buoyancy force is predicted for electrically-charged objects in the planetary scalar field, and this calculation appears to be the first quantitative falsification of the Kaluza unification. Since the simplest classical field, a long-range scalar field, is expected in nature, and since the Kaluza scalar field is as weak as gravity, we suggest that if there is an error in this calculation, it is likely to be in the magnitude of the coupling to the scalar field, not in the existence or magnitude of the scalar field itself.

Author(s):  
Y. Balytskyi ◽  
D. Hoyer ◽  
A. O. Pinchuk ◽  
L. L. Williams

Abstract Novel parameterizations are presented for monopole solutions to the static, spherically-symmetric vacuum field equations of five-dimensional general relativity. First proposed by Kaluza, 5D general relativity unites gravity and classical electromagnetism with a scalar field. These monopoles correspond to bodies carrying mass, electric charge, and scalar charge. The new parameterizations provide physical insight into the nature of electric charge and scalar field energy. The Reissner-Nordstr\"om limit is compared with alternate physical interpretations of the solution parameters. The new parameterizations explore the role of scalar field energy and the relation of electric charge to scalar charge. The Kaluza vacuum equations imply the scalar field energy density is the negative of the electric field energy density for all known solutions, so the total electric and scalar field energy of the monopole is zero. The vanishing of the total electric and scalar field energy density for vacuum solutions seems to imply the scalar field can be understood as a negative-energy foundation on which the electric field is built.


1977 ◽  
Vol 55 (22) ◽  
pp. 2019-2022 ◽  
Author(s):  
G. Nash ◽  
H. Schiff

A classical field model is proposed, involving a scalar field interacting with the electromagnetic field, that has discrete particle-like solutions corresponding to any desired mass spectrum, all such solutions having exactly the same electric charge.


Physics ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 587-595
Author(s):  
Martin Tajmar ◽  
Lance L. Williams

Kaluza was the first to realize that the four-dimensional gravitational field of general relativity and the classical electromagnetic field behave as if they were components of a five-dimensional gravitational field. We present a novel experimental test of the macroscopic classical interpretation of the Kaluza fifth dimension. Our experiment design probes a key feature of Kaluza unification—that electric charge is identified with motion in the fifth dimension. Therefore, we tested for a time dilation effect on an electrically charged clock. This test can also be understood as a constraint on time dilation from a constant electric potential of any origin. This is only the second such test of time dilation under electric charge reported in the literature, and a null result was obtained here. We introduce the concept of a charged clock in the Kaluza context, and discuss some ambiguities in its interpretation. We conclude that a classical, macroscopic interpretation of the Kaluza fifth dimension may require a timelike signature in the five-dimensional metric, and the associated absence of a rest frame along the fifth coordinate.


2019 ◽  
Vol 65 (2 Jul-Dec) ◽  
pp. 105
Author(s):  
D. P. Meira Filho ◽  
G. Dos Santos de Sausa ◽  
L. Helena Silva de Souza ◽  
R. De Silva Sales ◽  
J. Kysnney Santos Kamassury ◽  
...  

In this paper we will use classical field theory to address the interaction of an accelerated point source with a non-massive Klein-Gordon-Fock (KGF) field in Minkowski spacetime. For this, initially, we obtain the KGF equation for the non-massive scalar field via lagrangian formalism and the scalar potential through Green's function formalism. Finally, we reach the expression of the power radiated by a point scalar source under the influence of this field and its covariant generalization.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Hyat Huang ◽  
Zhong-Ying Fan ◽  
H. Lü

AbstractWe consider a class of Einstein–Maxwell–dilaton theories in general dimensions and construct both static and dynamic charged black holes. We adopt the reverse engineering procedure and make a specific ansatz for the scalar field and then derive the necessary scalar potential and the non-minimal coupling function between the scalar and the Maxwell field. The resulting static black holes contain mass and electric charge as integration constants. We find that some of the static solutions can be promoted to become dynamical ones in the Eddington–Finkelstein-like coordinates. The collapse solutions describe the evolution from a smaller charged black hole to a larger black hole state, driven by the scalar field.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Nozima Juraeva ◽  
Javlon Rayimbaev ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
Satimbay Palvanov

AbstractIn the present paper, we investigate the dynamics of magnetized particles around magnetically and electrically Reissner–Nordström (RN) black hole. The main idea of the work is to distinguish the effects of electric and magnetic charges of the RN black hole and spin of the rotating Kerr black hole through the dynamics of the magnetized particles. In this study, we have treated a magnetized neutron star as a magnetized test particle, in particular, the magnetar SGR (PSR) J1745-2900 orbiting around the supermassive black hole Sagittarius A* (SMBH SgrA*) with the magnetic interaction parameter $$b=0.716$$ b = 0.716 and the parameter $$\beta =10.2$$ β = 10.2 . The comparison of the effects of the magnetic and electric charges, and magnetic interaction parameters on the dynamics of the magnetar modeled as a magnetized particle near the SMBH Sgr A* has shown that the magnetic charge of the RN black hole can mimic the spin parameter of a rotating Kerr black hole up to $$a/M \simeq 0.82$$ a / M ≃ 0.82 . The external magnetic field can mimic the magnetic charge of the RN black hole up to $$Q_m/M=0.4465$$ Q m / M = 0.4465 . We have shown that the electric charge of the RN black hole can mimic the black hole magnetic charge up to $$Q_m/M=0.5482$$ Q m / M = 0.5482 and the magnetic field interaction with the magnetized particle acts against the increase of the mimicking value of the black hole spin parameter. The studies may be helpful to explain the observability of radio pulsars around the SMBH SgrA* system and taking it as a real astrophysical laboratory to get more precise constraints on the central black hole and dominated parameters of the alternate gravity. Finally, we have investigated the effects of magnetic and electric charge of the RN black hole in the center-of-mass energy of head-on collisions of magnetized particles with neutral, electrically charged, and magnetized particles. Both electric and magnetic charges of the RN black hole would lead to an increase in the center of the mass–energy of the collisions.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 160-172
Author(s):  
G. Hathaway ◽  
L. L. Williams

We report test results searching for an effect of electrostatic charge on weight. For conducting test objects of mass of order 1 kg, we found no effect on weight, for potentials ranging from 10 V to 200 kV, corresponding to charge states ranging from 10−9 to over 10−5 coulombs, and for both polarities, to within a measurement precision of 2 g. While such a result may not be unexpected, this is the first unipolar, high-voltage, meter-scale, static test for electro-gravitic effects reported in the literature. Our investigation was motivated by the search for possible coupling to a long-range scalar field that could surround the planet, yet go otherwise undetected. The large buoyancy force predicted within the classical Kaluza theory involving a long-range scalar field is falsified by our results, and this appears to be the first such experimental test of the classical Kaluza theory in the weak field regime, where it was otherwise thought identical with known physics. A parameterization is suggested to organize the variety of electro-gravitic experiment designs.


Author(s):  
F. P. POULIS ◽  
J. M. SALIM

Motivated by an axiomatic approach to characterize space-time it is investigated a reformulation of Einstein's gravity where the pseudo-riemannian geometry is substituted by a Weyl one. It is presented the main properties of the Weyl geometry and it is shown that it gives extra contributions to the trajectories of test particles, serving as one more motivation to study general relativity in Weyl geometry. It is introduced its variational formalism and it is established the coupling with other physical fields in such a way that the theory acquires a gauge symmetry for the geometrical fields. It is shown that this symmetry is still present for the red-shift and it is concluded that for cosmological models it opens the possibility that observations can be fully described by the new geometrical scalar field. It is concluded then that this reformulation, although representing a theoretical advance, still needs a complete description of their objects.


Sign in / Sign up

Export Citation Format

Share Document