scholarly journals Vitamin D, Calcium, Parathyroid Hormone, and Sex Steroids in Bone Health and Effects of Aging

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hitesh Kumar Bhattarai ◽  
Shreya Shrestha ◽  
Kabita Rokka ◽  
Rosy Shakya

Bone health of the elderly is a major global health concern, since about 1 in 3 women and 1 in 5 men suffer from bone loss and fractures, often called osteoporosis, in old age. Bone health is a complex issue affected by multiple hormones and minerals. Among all the hormones involved in bone health, calcitriol (also vitamin D), parathyroid, and sex hormones (especially estrogen) have been discussed in this review paper. We have discussed the metabolism of these hormones and their effects on bone health. Vitamin D can be obtained from diet or formed from 7-dehydrocholesterol found under the skin in the presence of sunlight. The active form, calcitriol, causes dimerization of vitamin D receptor and acts on the bones, intestine, and kidney to regulate the level of calcium in blood. Similarly, parathyroid hormone is secreted when the serum level of calcium is low. It helps regulate the level of blood calcium through calcitriol. Sex hormones regulate bone modeling at an early age and remodeling later in life. Loss of ovarian function and a decrement in the level of production of estrogen are marked by bone loss in elderly women. In the elderly, various changes in the calcium and vitamin D metabolism, such as decrease in the production of vitamin D, decrease in dietary vitamin D, decreased renal production, increased production of excretory products, decrease in the level of VDR, and decreased calcium absorption by the intestines, can lead to bone loss. When the elderly are diagnosed with osteoporosis, medications that directly target bone such as bisphosphonates, RANK ligand inhibitors, estrogen and estrogen analogues, estrogen receptor modulators, and parathyroid hormone receptor agonists are used. Additionally, calcium and vitamin D supplements are prescribed.

2018 ◽  
Vol 12 (1) ◽  
pp. 300-312 ◽  
Author(s):  
Pier Paolo Sainaghi ◽  
Antonello Gibbin

Patients with Rheumatoid Arthritis (RA) commonly develop osteoporosis and fragility fractures. This fact cannot be explained only with the use of glucocorticoids, known to be detrimental for bone health. RA is characterized by a chronic inflammation caused by the continuous activation of innate and adaptive immunity with proinflammatory cytokines overproduction. This process is detrimental for several organs and physiological processes, including the impairment of bone remodeling. We will briefly review the pathogenesis of inflammation-related bone loss in RA, describing well-known and new molecular pathways and focusing on vitamin D and Parathyroid Hormone role.


2001 ◽  
Vol 4 (2b) ◽  
pp. 547-559 ◽  
Author(s):  
C Gennari

AbstractOsteoporosis, a systemic skeletal disease characterized by a low bone mass, is a major public health problem in EC member states because of the high incidence of fragility fractures, especially hip and vertebral fracture. In EC member states the high incidence of osteoporotic fractures leads to considerable mortality, morbidity, reduced mobility and decreased quality of life. In 1995 the number of hip fractures in 15 countries of EC has been 382.000 and the estimated total care cost of about 9 billion of ECUs. Given the magnitude of the problem public health measures are important for preventive intervention.Skeletal bone mass is determined by a combination of endogenous (genetic, hormonal) and exogenous (nutritional, physical activity) factors. Nutrition plays an important role in bone health. The two nutrients essential for bone health are calcium and vitamin D. Reduced supplies of calcium are associated with a reduced bone mass and osteoporosis, whereas a chronic and severe vitamin D deficiency leads to osteomalacia, a metabolic bone disease characterized by a decreased mineralization of bone. Vitamin D insufficiency, the preclinical phase of vitamin D deficiency, is most commonly found in the elderly. The major causes of vitamin D deficiency and insufficiency are decreased renal hydroxylation of vitamin D, poor nutrition, scarce exposition to sunlight and a decline in the synthesis of vitamin D in the skin.The daily average calcium intake in Europe has been evaluated in the SENECA study concerning the diet of elderly people from 19 towns of 10 European countries. In about one third of subjects the dietary calcium intake results were very low, between 300 and 600 mg/day in women, and 350 and 700 mg/day in men. Calcium supplements reduce the rate of bone loss in osteoporotic patients. Some recent studies have reported a significant positive effect of calcium treatment not only on bone mass but also on fracture incidence. The SENECA study, has also shown that vitamin D insufficiency is frequent in elderly populations in Europe. There are a number of studies on the effects of vitamin D supplementation on bone loss in the elderly, showing that supplementations with daily doses of 400–800 IU of vitamin D, given alone or in combination with calcium, are able to reverse vitamin D insufficiency, to prevent bone loss and to improve bone density in the elderly.In recent years, there has been much uncertainty about the intake of calcium for various ages and physiological states. In 1998, the expert committee of the European Community in the Report on Osteoporosis-Action on prevention, has given the recommended daily dietary allowances (RDA) for calcium at all stage of life. For the elderly population, above age 65 the RDA is 700–800 mg/day. The main source of calcium in the diet are dairy products (milk, yoghurts and cheese) fish (sardines with bones), few vegetables and fruits. The optimal way to achieve adequate calcium intake is through the diet. However, when dietary sources are scarce or not well tolerated, calcium supplementation may be used. Calcium is generally well tolerated and reports of significant side-effects are rare.Adequate sunlight exposure may prevent and cure vitamin D insufficiency. However, the sunlight exposure or the ultraviolet irradiation are limited by concern about skin cancer and skin disease. The most rational approach to reducing vitamin D insufficiency is supplementation. In Europe, the RDA is 400–800 IU (10–20 μg) daily for people aged 65 years or over. This dose is safe and free of side effects.In conclusion, in Europe a low calcium intake and a suboptimal vitamin D status are very common in the elderly. Evidence supports routine supplementation for these people at risk of osteoporosis, by providing a daily intake of 700–800 mg of calcium and 400–800 IU of vitamin D. This is an effective, safe and cheap means of preventing osteoporotic fractures.


2016 ◽  
Author(s):  
Terry J Aspray ◽  
Roger M Francis ◽  
Elaine McColl ◽  
Thomas Chadwick ◽  
Elaine Stamp ◽  
...  

2012 ◽  
Vol 15 (10) ◽  
pp. 1845-1853 ◽  
Author(s):  
Maryam A Al-Ghamdi ◽  
Susan A Lanham-New ◽  
Jalal A Kahn

AbstractObjectiveFew data exist looking at vitamin D status and bone health in school-aged boys and girls from Saudi Arabia. The present study aimed to determine the extent of poor vitamin D status in school boys and girls aged 6–18 years and to examine if there was any difference in status with age, physical activity and veiling and concomitant effects on bone.DesignCross-sectional study.SettingJeddah, Kingdom of Saudi Arabia.SubjectsA total of 150 boys (7–16 years) and 150 girls (6–18 years) from local schools were divided into age categories: 6–9 years (elementary school); 10–12 years (secondary school); 13–14 years (middle years); 15–18 years (high school).ResultsVitamin D status was significantly lower in girls than boys in all age groups (P < 0·01), with the 15–18-year-old girls having the lowest level (22·0 (sd 9·4) nmol/l) in comparison to the 15–18-year-old boys (39·3 (sd 14·0) nmol/l) and the 6–9-year-old girls (41·2 (sd 9·3) nmol/l). Parathyroid hormone status was highest in the 15–18-year-old girls in comparison to boys of the same age. A total of 64 % of 15–18-year-old girls had 25-hydroxyvitamin D (25OHD) status <25 nmol/l in comparison to 31 % in the 13–14 years age category, 26 % in the 10–12 years category and 2·5 % in the 6–9 years category. No boys had 25OHD status <25 nmol/l. Fully veiled girls had lower 25OHD status than partly veiled or unveiled girls (P < 0·05). Low 25OHD and high parathyroid hormone was associated with lower bone mass in the 6–9 years and 13–14 years age groups (P < 0·05).ConclusionsThese data suggest significant hypovitaminosis D in older adolescent females, which is a cause for concern given that there is currently no public health policy for vitamin D in the Kingdom of Saudi Arabia.


1982 ◽  
Vol 36 (5) ◽  
pp. 1014-1031 ◽  
Author(s):  
A M Parfitt ◽  
J C Gallagher ◽  
R P Heaney ◽  
C C Johnston ◽  
R Neer ◽  
...  
Keyword(s):  

1983 ◽  
Vol 38 (3) ◽  
pp. 165-167
Author(s):  
O. HELMER SØRENSEN ◽  
B O LUMHOLTZ ◽  
BIRGER LUND ◽  
BJARNE LUND ◽  
INGE L. HJELMSTRAND ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 308-321
Author(s):  
Svetlana V. Bulgakova ◽  
◽  
Dmitriy P. Kurmaev ◽  
Marina V. Silyutina ◽  
Elena A. Voronina ◽  
...  

Osteoporosis is increasingly found in the elderly and senile, maintaining its enormous medical and social significance. The effect of hormones on bone metabolism is beyond doubt. However, currently the data on the effect of sex hormones on bone tissue prevails. As for the other hormones, sometimes, there are conflicting opinions. The aim of the study: Based on published data, to study the contribution of the endocrine system to the development of osteoporosis in the elderly. Materials and methods: Literature data was analyzed using the following search words: osteoporosis, bone mineral density, FSH, estrogens, testosterone, cortisol, vitamin D, IGF1 for 1998-2020 in computer databases PubMed, Scopus, Medical- Science, Elibrary, Web of Science, Ceeol. Results: Analysis of the literature showed that the increase of levels of thyroid stimulating hormone (TSH) plays an osteoprotective role; the decrease of levels of estrogen, testosterone, insulin-like growth factor 1 (IGF1) and vitamin D, as well as the increase in the levels of cortisol, parathyroid hormone and follicle-stimulating hormone (FSH) contribute to bone loss in the elderly and senile. In addition, the FSH receptor (FSHR) genotype AA rs6166 is associated with low bone mineral density, regardless of estrogen level. A polyclonal antibody with an FSHR-binding sequence against mouse β-subunit of FSH is likely to be an effective tool for reducing bone loss in mice subjected to ovariectomy. Conclusion: A comprehensive assessment of the hormonal profile in the elderly and senile is needed to identify the causes of osteoporosis and the formation of an individual program of medical diagnostic and rehabilitation measures. Currently, there are all prerequisites for the development of new diagnostic and therapeutic interventions for the correction of low bone density.


Sign in / Sign up

Export Citation Format

Share Document