Vitamin D and bone health in the elderly

1982 ◽  
Vol 36 (5) ◽  
pp. 1014-1031 ◽  
Author(s):  
A M Parfitt ◽  
J C Gallagher ◽  
R P Heaney ◽  
C C Johnston ◽  
R Neer ◽  
...  
Keyword(s):  
2008 ◽  
Vol 18 (2) ◽  
pp. 204-224 ◽  
Author(s):  
Kentz S. Willis ◽  
Nikki J. Peterson ◽  
D. Enette Larson-Meyer

A surprisingly high prevalence of vitamin D insufficiency and deficiency has recently been reported worldwide. Although very little is known about vitamin D status among athletes, a few studies suggest that poor vitamin D status is also a problem in athletic populations. It is well recognized that vitamin D is necessary for optimal bone health, but emerging evidence is finding that vitamin D deficiency increases the risk of autoimmune diseases and nonskeletal chronic diseases and can also have a profound effect on human immunity, inflammation, and muscle function (in the elderly). Thus, it is likely that compromised vitamin D status can affect an athlete’s overall health and ability to train (i.e., by affecting bone health, innate immunity, and exercise-related immunity and inflammation). Although further research in this area is needed, it is important that sports nutritionists assess vitamin D (as well as calcium) intake and make appropriate recommendations that will help athletes achieve adequate vitamin D status: serum 25(OH)D of at least 75 or 80 nmol/L. These recommendations can include regular safe sun exposure (twice a week between the hours of 10 a.m. and 3 p.m. on the arms and legs for 5–30 min, depending on season, latitude, and skin pigmentation) or dietary supplementation with 1,000–2,000 IU vitamin D3 per day. Although this is significantly higher than what is currently considered the adequate intake, recent research demonstrates these levels to be safe and possibly necessary to maintain adequate 25(OH)D concentrations.


2020 ◽  
Vol 7 (4) ◽  
pp. 3709-3720
Author(s):  
Jalal Hejazi ◽  
Ali Davoodi ◽  
Mohammadreza Khosravi ◽  
Meghdad Sedaghat ◽  
Vahideh Abedi ◽  
...  

Introduction: Osteoporosis falls among the major general health issues, specifically in the elderly, and is a widespread disease these days. According to various studies, good nutrition plays a significant role in osteoporosis prevention and treatment. The aim of this study was to conduct an extensive literature review on the effects of different nutrients to understand how macronutrients, micronutrients, and non-nutritive substances affect bone health. Methodology: To find relevant studies, the main keyword “osteoporosis” was searched in combination with “zinc,” “vitamin K,” “phosphorus,” “vitamin D,” “calcium,” “lipid,” “protein,” and “phytoestrogens” in PubMed (MEDLINE), Web of Science, SID, and Iran Medex databases. Findings: The most important element for bone health is calcium, which has a direct link to the bone mass density (BMD). In the case of calcium deficiency, high phosphorus content can damage bone tissue. The acceptable ratio of phosphorus to calcium is 0.5-1.5:1. Vitamin D is another important nutrient for bones; serum levels of vitamin D less than 20 ng/ml reduce bone density and increase the risk of fracture. High protein intake results in calcium excretion and loss of bone mass. In addition, calcium deficiency increases the risk of osteoporosis, specifically in the elderly. According to the literature, there is an inverse correlation between saturated fats and BMD. Vitamin K and magnesium deficiencies are correlated with BMD reduction and increased risk of osteoporosis. Copper and zinc are used as co-factors in the formation of collagen and elastin, and in mineralization of bone. As a result, deficiency of these elements may disrupt the process of incorporating minerals into the bone matrix. Conclusion: Good nutrition may play a significant role in osteoporosis prevention and treatment. Indeed, a healthy diet containing calcium (1,200 mg/day); vitamin D (600 IU); and certain amounts of protein, magnesium, and vitamin K can contribute greatly to bone health.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hitesh Kumar Bhattarai ◽  
Shreya Shrestha ◽  
Kabita Rokka ◽  
Rosy Shakya

Bone health of the elderly is a major global health concern, since about 1 in 3 women and 1 in 5 men suffer from bone loss and fractures, often called osteoporosis, in old age. Bone health is a complex issue affected by multiple hormones and minerals. Among all the hormones involved in bone health, calcitriol (also vitamin D), parathyroid, and sex hormones (especially estrogen) have been discussed in this review paper. We have discussed the metabolism of these hormones and their effects on bone health. Vitamin D can be obtained from diet or formed from 7-dehydrocholesterol found under the skin in the presence of sunlight. The active form, calcitriol, causes dimerization of vitamin D receptor and acts on the bones, intestine, and kidney to regulate the level of calcium in blood. Similarly, parathyroid hormone is secreted when the serum level of calcium is low. It helps regulate the level of blood calcium through calcitriol. Sex hormones regulate bone modeling at an early age and remodeling later in life. Loss of ovarian function and a decrement in the level of production of estrogen are marked by bone loss in elderly women. In the elderly, various changes in the calcium and vitamin D metabolism, such as decrease in the production of vitamin D, decrease in dietary vitamin D, decreased renal production, increased production of excretory products, decrease in the level of VDR, and decreased calcium absorption by the intestines, can lead to bone loss. When the elderly are diagnosed with osteoporosis, medications that directly target bone such as bisphosphonates, RANK ligand inhibitors, estrogen and estrogen analogues, estrogen receptor modulators, and parathyroid hormone receptor agonists are used. Additionally, calcium and vitamin D supplements are prescribed.


2001 ◽  
Vol 4 (2b) ◽  
pp. 547-559 ◽  
Author(s):  
C Gennari

AbstractOsteoporosis, a systemic skeletal disease characterized by a low bone mass, is a major public health problem in EC member states because of the high incidence of fragility fractures, especially hip and vertebral fracture. In EC member states the high incidence of osteoporotic fractures leads to considerable mortality, morbidity, reduced mobility and decreased quality of life. In 1995 the number of hip fractures in 15 countries of EC has been 382.000 and the estimated total care cost of about 9 billion of ECUs. Given the magnitude of the problem public health measures are important for preventive intervention.Skeletal bone mass is determined by a combination of endogenous (genetic, hormonal) and exogenous (nutritional, physical activity) factors. Nutrition plays an important role in bone health. The two nutrients essential for bone health are calcium and vitamin D. Reduced supplies of calcium are associated with a reduced bone mass and osteoporosis, whereas a chronic and severe vitamin D deficiency leads to osteomalacia, a metabolic bone disease characterized by a decreased mineralization of bone. Vitamin D insufficiency, the preclinical phase of vitamin D deficiency, is most commonly found in the elderly. The major causes of vitamin D deficiency and insufficiency are decreased renal hydroxylation of vitamin D, poor nutrition, scarce exposition to sunlight and a decline in the synthesis of vitamin D in the skin.The daily average calcium intake in Europe has been evaluated in the SENECA study concerning the diet of elderly people from 19 towns of 10 European countries. In about one third of subjects the dietary calcium intake results were very low, between 300 and 600 mg/day in women, and 350 and 700 mg/day in men. Calcium supplements reduce the rate of bone loss in osteoporotic patients. Some recent studies have reported a significant positive effect of calcium treatment not only on bone mass but also on fracture incidence. The SENECA study, has also shown that vitamin D insufficiency is frequent in elderly populations in Europe. There are a number of studies on the effects of vitamin D supplementation on bone loss in the elderly, showing that supplementations with daily doses of 400–800 IU of vitamin D, given alone or in combination with calcium, are able to reverse vitamin D insufficiency, to prevent bone loss and to improve bone density in the elderly.In recent years, there has been much uncertainty about the intake of calcium for various ages and physiological states. In 1998, the expert committee of the European Community in the Report on Osteoporosis-Action on prevention, has given the recommended daily dietary allowances (RDA) for calcium at all stage of life. For the elderly population, above age 65 the RDA is 700–800 mg/day. The main source of calcium in the diet are dairy products (milk, yoghurts and cheese) fish (sardines with bones), few vegetables and fruits. The optimal way to achieve adequate calcium intake is through the diet. However, when dietary sources are scarce or not well tolerated, calcium supplementation may be used. Calcium is generally well tolerated and reports of significant side-effects are rare.Adequate sunlight exposure may prevent and cure vitamin D insufficiency. However, the sunlight exposure or the ultraviolet irradiation are limited by concern about skin cancer and skin disease. The most rational approach to reducing vitamin D insufficiency is supplementation. In Europe, the RDA is 400–800 IU (10–20 μg) daily for people aged 65 years or over. This dose is safe and free of side effects.In conclusion, in Europe a low calcium intake and a suboptimal vitamin D status are very common in the elderly. Evidence supports routine supplementation for these people at risk of osteoporosis, by providing a daily intake of 700–800 mg of calcium and 400–800 IU of vitamin D. This is an effective, safe and cheap means of preventing osteoporotic fractures.


2013 ◽  
Author(s):  
M Schundeln Michael ◽  
K Hauffa Pia ◽  
C Goretzki Sara ◽  
Lahner Harald ◽  
Marschke Laura ◽  
...  

2020 ◽  
Author(s):  
Jagjit S Soar

he current COVID-19 pandemic now believed to be based on the mutation of the SARS-CoV virus (first reported in 2002) to SARS-CoV-2 emerging in 2019, is naturally causing extreme worry and concern around the world with sometimes mixed and incoherent messages on how to deal with it. There is a plethora of information from previous epidemics caused by other coronaviruses such as severe acute respiratory syndrome, SARS (2002) and Middle East respiratory syndrome MERS (2012) from which we can extrapolate guidance on how to deal with the current pandemic. In the current absence of specific pharmaceutical agents, we propose assessing the extended tools that we already possess in our biological armoury to combat, prevent and control the spread of this virus. Using a set of precise criteria to locate such possible contenders, we conducted literature searches to find compounds that met these criteria. We have now reduced this to a shortlist of three agents that may be the best candidates. We propose vitamin C, vitamin D and Curcumin fit our criteria well. These compounds are widely available to the general public. They are available online and over-the-counter as supplements. Otherwise healthy individuals are safely able to self-administer these agents as a prophylactic to protect themselves and to enhance their immune response. This would be especially desirable for the elderly and at risk groups. These agents can also be used as adjunct therapy, particularly for those who may have early symptoms. This preventative therapy could be implemented whilst awaiting specific pharmaceutical drugs to emerge as a treatment for COVID-19. Our suggested compounds are a highly cost-effective way to potentially reduce the mortality that is regretfully mounting as a result of COVID-19 infection. The biological mode of action and the dosing of these compounds are summarised.


Sign in / Sign up

Export Citation Format

Share Document