scholarly journals Pedestrian Heading Estimation Methods Based on Multiple Phone Carrying Modes

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ying Guo ◽  
Hanshuo Liu ◽  
Jin Ye ◽  
Shengli Wang ◽  
Chenxi Duan

The development of smartphone Micro-Electro-Mechanical Systems (MEMS) inertial sensors has provided opportunities to improve indoor navigation and positioning for location-based services. One area of indoor navigation research uses pedestrian dead reckoning (PDR) technology, in which the mobile phone must typically be held to the pedestrian’s chest. In this paper, we consider navigation in three other mobile phone carrying modes: “calling,” “pocket,” and “swinging.” For the calling mode, in which the pedestrian holds the phone to their face, the rotation matrix method is used to convert the phone’s gyroscope data from the calling state to the holding state, allowing calculation of the stable pedestrian forward direction. For a phone carried in a pedestrian’s trouser pocket, a heading complementary equation is established based on principal component analysis and rotation approach methods. In this case, the pedestrian heading is calculated by determining a subset of data that avoid 180° directional ambiguity and improve the heading accuracy. For the swinging mode, a heading capture method is used to obtain the heading of the lowest point of the pedestrian’s arm swing as they hold the phone. The direction of travel is then determined by successively adding the heading offsets each time the arm droops. Experimental analysis shows that 95% of the heading errors of the above three methods are less than 5.81°, 10.73°, and 9.22°, respectively. These results present better heading accuracy and reliability.

Geomatics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 148-176
Author(s):  
Maan Khedr ◽  
Naser El-Sheimy

Mobile location-based services (MLBS) are attracting attention for their potential public and personal use for a variety of applications such as location-based advertisement, smart shopping, smart cities, health applications, emergency response, and even gaming. Many of these applications rely on Inertial Navigation Systems (INS) due to the degraded GNSS services indoors. INS-based MLBS using smartphones is hindered by the quality of the MEMS sensors provided in smartphones which suffer from high noise and errors resulting in high drift in the navigation solution rapidly. Pedestrian dead reckoning (PDR) is an INS-based navigation technique that exploits human motion to reduce navigation solution errors, but the errors cannot be eliminated without aid from other techniques. The purpose of this study is to enhance and extend the short-term reliability of PDR systems for smartphones as a standalone system through an enhanced step detection algorithm, a periodic attitude correction technique, and a novel PCA-based motion direction estimation technique. Testing shows that the developed system (S-PDR) provides a reliable short-term navigation solution with a final positioning error that is up to 6 m after 3 min runtime. These results were compared to a PDR solution using an Xsens IMU which is known to be a high grade MEMS IMU and was found to be worse than S-PDR. The findings show that S-PDR can be used to aid GNSS in challenging environments and can be a viable option for short-term indoor navigation until aiding is provided by alternative means. Furthermore, the extended reliable solution of S-PDR can help reduce the operational complexity of aiding navigation systems such as RF-based indoor navigation and magnetic map matching as it reduces the frequency by which these aiding techniques are required and applied.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1170 ◽  
Author(s):  
Adi Manos ◽  
Itzik Klein ◽  
Tamir Hazan

One of the common ways for solving indoor navigation is known as Pedestrian Dead Reckoning (PDR), which employs inertial and magnetic sensors typically embedded in a smartphone carried by a user. Estimation of the pedestrian’s heading is a crucial step in PDR algorithms, since it is a dominant factor in the positioning accuracy. In this paper, rather than assuming the device to be fixed in a certain orientation on the pedestrian, we focus on estimating the vertical direction in the sensor frame of an unconstrained smartphone. To that end, we establish a framework for gravity direction estimation and highlight the important role it has for solving the heading in the horizontal plane. Furthermore, we provide detailed derivation of several approaches for calculating the heading angle, based on either the gyroscope or the magnetic sensor, all of which employ the estimated vertical direction. These various methods—both for gravity direction and for heading estimation—are demonstrated, analyzed and compared using data recorded from field experiments with commercial smartphones.


2002 ◽  
Vol 55 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Stephen Scott-Young ◽  
Allison Kealy

The increasing availability of small, low-cost GPS receivers has established a firm growth in the production of Location-Based Services (LBS). LBS, such as in-car navigation systems, are not necessarily reliant on high accuracy but a continuous positioning service. When available, the accuracy provided by the standard positioning service (SPS) of 30 metres, 95% of the time is often acceptable. The reality is, however, that GPS does not work in all situations, and it is therefore common to integrate GPS with additional sensors. The use of low-cost inertial sensors alone during GPS signal outage is severely restricted due to the accumulation of errors that is inherent with such dead reckoning (DR) systems. Through the integration of spatial information with real-time positioning sensors, intelligence can be added to the land mobile navigation solution. The information contained within a Geographical Information System (GIS) provides additional observations that can be used to improve the navigation result. With this approach, the solution is not dependent on the performance capabilities of the navigation sensors alone. This enables the use of lower accuracy navigation devices, allowing low-cost systems to provide a sustained, viable navigation solution despite long-term GPS outages. Practical results are presented comparing solutions obtained from a hand-held GPS receiver to a gyroscope and odometer.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ying Guo ◽  
Qinghua Liu ◽  
Xianlei Ji ◽  
Shengli Wang ◽  
Mingyang Feng ◽  
...  

Pedestrian dead reckoning (PDR) is an essential technology for positioning and navigation in complex indoor environments. In the process of PDR positioning and navigation using mobile phones, gait information acquired by inertial sensors under various carrying positions differs from noise contained in the heading information, resulting in excessive gait detection deviation and greatly reducing the positioning accuracy of PDR. Using data from mobile phone accelerometer and gyroscope signals, this paper examined various phone carrying positions and switching positions as the research objective and analysed the time domain characteristics of the three-axis accelerometer and gyroscope signals. A principal component analysis algorithm was used to reduce the dimension of the extracted multidimensional gait feature, and the extracted features were random forest modelled to distinguish the phone carrying positions. The results show that the step detection and distance estimation accuracy in the gait detection process greatly improved after recognition of the phone carrying position, which enhanced the robustness of the PDR algorithm.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4554 ◽  
Author(s):  
Hongyu Zhao ◽  
Wanli Cheng ◽  
Ning Yang ◽  
Sen Qiu ◽  
Zhelong Wang ◽  
...  

Combining research areas of biomechanics and pedestrian dead reckoning (PDR) provides a very promising way for pedestrian positioning in environments where Global Positioning System (GPS) signals are degraded or unavailable. In recent years, the PDR systems based on a smartphone’s built-in inertial sensors have attracted much attention in such environments. However, smartphone-based PDR systems are facing various challenges, especially the heading drift, which leads to the phenomenon of estimated walking path passing through walls. In this paper, the 2D PDR system is implemented by using a pocket-worn smartphone, and then enhanced by introducing a map-matching algorithm that employs a particle filter to prevent the wall-crossing problem. In addition, to extend the PDR system for 3D applications, the smartphone’s built-in barometer is used to measure the pressure variation associated to the pedestrian’s vertical displacement. Experimental results show that the map-matching algorithm based on a particle filter can effectively solve the wall-crossing problem and improve the accuracy of indoor PDR. By fusing the barometer readings, the vertical displacement can be calculated to derive the floor transition information. Despite the inherent sensor noises and complex pedestrian movements, smartphone-based 3D pedestrian positioning systems have considerable potential for indoor location-based services (LBS).


2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Ahmed Mansour ◽  
Wu Chen ◽  
Huan Luo ◽  
Yaxin Li ◽  
Jingxian Wang ◽  
...  

The inherent errors of low-cost inertial sensors cause significant heading drift that accumulates over time, making it difficult to rely on Pedestrian Dead Reckoning (PDR) for navigation over a long period. Moreover, the flexible portability of the smartphone poses a challenge to PDR, especially for heading determination. In this work, we aimed to control the PDR drift under the conditions of the unconstrained smartphone to eventually enhance the PDR performance. To this end, we developed a robust step detection algorithm that efficiently captures the peak and valley events of the triggered steps regardless of the device’s pose. The correlation between these events was then leveraged as distinct features to improve smartphone pose detection. The proposed PDR system was then designed to select the step length and heading estimation approach based on a real-time walking pattern and pose discrimination algorithm. We also leveraged quasi-static magnetic field measurements that have less disturbance for estimating reliable compass heading and calibrating the gyro heading. Additionally, we also calibrated the step length and heading when a straight walking pattern is observed between two base nodes. Our results showed improved device pose recognition accuracy. Furthermore, robust and accurate results were achieved for step length, heading and position during long-term navigation under unconstrained smartphone conditions.


2019 ◽  
Vol 4 (2) ◽  
pp. 50-60 ◽  
Author(s):  
Haval Darwesh Abdalkarim ◽  
Halgurd Sarhang Maghdid

In the last decade, there is a significant progression and huge demand in using technology; specifically, those technologies are embedded in smartphones (SP). Examples of these technologies are embedding various sensors for multi-purposes. Positioning sensors (Accelerometer, Gyroscope, and Magnetometer) are one of the significant technologies. Besides this, indoor positioning services on smartphones are the main advantage of these sensors. There are many indoor positioning applications, for instance; billing, shopping, security and safety, indoor navigation, entertainment applications, and other point-of-interest (POI) applications. Nevertheless, precise position information through current positioning techniques is the main issue of these applications. The pedestrian dead reckoning (PDR) technique is one of the techniques in which the integration of onboard sensors is used for locating smartphones. Estimated distance, heading, and typical speed can be measured to determine the estimated position of the smartphone via using the PDR technique. The PDR technique offers a low positioning accuracy due to existing accumulated errors of the embedded sensors. To solve this issue, this article proposes a hybrid multi-sensors measurement to reduce the existing sensors drifts and errors and to increase estimated heading accuracy of the smartphone. Further, the sensors’ measurements with the previously estimated position are fused by using KALMAN Filter to determine the current location of the smartphone in each step of walking with better angular displacement accuracy. Proposed algorithm depends on increasing estimated angular displacement of the smartphone using combination of the integrated sensors’ measurements. The achieved positioning accuracy through the proposed approach and based on trial experiments is around 2 meters, which is equivalent to 10% improvement in comparison with state of the art.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 420 ◽  
Author(s):  
Chuanhua Lu ◽  
Hideaki Uchiyama ◽  
Diego Thomas ◽  
Atsushi Shimada ◽  
Rin-ichiro Taniguchi

Demand for indoor navigation systems has been rapidly increasing with regard to location-based services. As a cost-effective choice, inertial measurement unit (IMU)-based pedestrian dead reckoning (PDR) systems have been developed for years because they do not require external devices to be installed in the environment. In this paper, we propose a PDR system based on a chest-mounted IMU as a novel installation position for body-suit-type systems. Since the IMU is mounted on a part of the upper body, the framework of the zero-velocity update cannot be applied because there are no periodical moments of zero velocity. Therefore, we propose a novel regression model for estimating step lengths only with accelerations to correctly compute step displacement by using the IMU data acquired at the chest. In addition, we integrated the idea of an efficient map-matching algorithm based on particle filtering into our system to improve positioning and heading accuracy. Since our system was designed for 3D navigation, which can estimate position in a multifloor building, we used a barometer to update pedestrian altitude, and the components of our map are designed to explicitly represent building-floor information. With our complete PDR system, we were awarded second place in 10 teams for the IPIN 2018 Competition Track 2, achieving a mean error of 5.2 m after the 800 m walking event.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 375 ◽  
Author(s):  
Ghulam Hussain ◽  
Muhammad Jabbar ◽  
Jun-Dong Cho ◽  
Sangmin Bae

The number of studies on the development of indoor positioning systems has increased recently due to the growing demands of the various location-based services. Inertial sensors available in commercial smartphones play an important role in indoor localization and navigation owing to their highly accurate localization performance. In this study, the inertial sensors of a smartphone, which generate distinct patterns for physical activities and action units (AUs), are employed to localize a target in an indoor environment. These AUs, (such as a left turn, right turn, normal step, short step, or long step), help to accurately estimate the indoor location of a target. By taking advantage of sophisticated deep learning algorithms, we propose a novel approach for indoor navigation based on long short-term memory (LSTM). The LSTM accurately recognizes physical activities and related AUs by automatically extracting the efficient features from the distinct patterns of the input data. Experiment results show that LSTM provides a significant improvement in the indoor positioning performance through the recognition task. The proposed system achieves a better localization performance than the trivial fingerprinting method, with an average error of 0.782 m in an indoor area of 128.6 m2. Additionally, the proposed system exhibited robust performance by excluding the abnormal activity from the pedestrian activities.


Sign in / Sign up

Export Citation Format

Share Document