scholarly journals Energy Auditing for Efficient Planning and Implementation in Commercial and Residential Buildings

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Angalaeswari Sendrayaperumal ◽  
Somyak Mahapatra ◽  
Sabuja Sanket Parida ◽  
Komal Surana ◽  
Parandhaman Balamurugan ◽  
...  

The ideology of ensuring energy-efficient design and construction of buildings by providing minimum requirements is the core objective of this work. Energy audit was conducted to improve the design of the building with incremental requirements to further enhance the energy efficiency. The Energy Conservation Building Code (ECBC) has been modified extensively over the years, starting from its initial deployment in the year 2011 to its latest modifications in the year 2019. The energy conservation standards in ECBC apply to building envelope, heating ventilation, air conditioning, lighting, service water heating, and electric power distribution. It should also be ensured that all-electric systems, transformers, energy-efficient motors, and diesel generators must meet the regulated set of mandatory requirements. From among the various software types that have been approved for ECBC design and application, this study has employed Energy Plus software to simulate the design based on the given input and the selected location. The location that has been chosen for this study was Bhubaneshwar, India. All necessary details ranging from latitude, longitude, weather, time zone, elevation, building area, lighting, heating, cooling, and much more have been covered in the simulation. Utilizing ECBC regulated standards for an energy-efficient building design has resulted in an increase in the energy savings by 27.4%, and thus, the building qualifies to be regarded as an ECBC compliant building.

Author(s):  
Niko Kalinic ◽  
Moncef Krarti

Calibrated energy simulations are often used to predict savings from energy conservation measures with little information about their associated prediction uncertainties. In this paper, the savings predicted by calibrated simulation models are compared to actual savings obtained through monitoring energy use before and after implementing selected energy conservation measures for three residential buildings. Both building envelope and HVAC system related energy conservation measures are considered in the study. Through case studies, this validity of using calibrated energy models for the estimation and verification of savings associated with energy conservation measures is thoroughly evaluated. Moreover, the paper provides useful guidelines for using calibrated models for measurement and verification energy savings from various weatherization programs specific to residential buildings.


2019 ◽  
pp. 728-755
Author(s):  
M. Mustafa Erdoğdu ◽  
Coşkun Karaca ◽  
Ali Kurultay

The amount of energy consumption in the residential buildings has a very significant share with nearly 30 percent in the total amount of energy consumption. Therefore, residential sector is identified in this chapter as being one of the areas with a large potential for energy savings. Inefficient dwelling construction and design methods are widely used in Turkey and only about five percent of residential buildings are insulated. Concerning the importance and immediate need in Turkey for energy-efficient residential building retrofitting, this chapter identifies economic benefits of such retrofitting by particularly focusing on heat transfers by conductivity, where the rate can be determined by surface size, thermal resistance of the building materials and their thickness.


2021 ◽  
Vol 312 ◽  
pp. 02013
Author(s):  
Giada Romano ◽  
Francesco Mancini

According to the European Renovation Wave, the European building stock is obsolete and changes very slowly: more than 220 million housing units and 85-95% of the existing buildings will still be in use in 2050 and are absolutely not energy efficient. To cut emissions by 55% by 2030, the EU should reduce greenhouse gas emissions from buildings by 60%, their final energy consumption by 14% and energy consumption for heating and cooling by 18%. It is therefore urgent for the EU to focus on making buildings more energy efficient, less carbon intensive throughout their life cycle and more sustainable. From this framework comes the need for an adaptation not only of residential buildings but also of hotel facilities, which, on a national scale, make up about 45% of the accommodation facilities. In particular, the offer of accommodation facilities must be constantly adequate and the structures must be upgraded so that they always remain usable and comply with current regulations from the accessibility, seismic-structural and energy point of view. In this research, four hotels located in the historic centre of Rome have been analysed as case studies. Starting from an analysis of the current state, a series of interventions on the building envelope and systems have been studied, evaluating energy savings and the reduction of polluting emissions. With regard to the systems, the total electrification of the heating and domestic hot water preparation systems has been hypothesised, with the introduction of storage systems, also in view of participation in Demand Response programs.


Author(s):  
M. Mustafa Erdoğdu ◽  
Coşkun Karaca ◽  
Ali Kurultay

The amount of energy consumption in the residential buildings has a very significant share with nearly 30 percent in the total amount of energy consumption. Therefore, residential sector is identified in this chapter as being one of the areas with a large potential for energy savings. Inefficient dwelling construction and design methods are widely used in Turkey and only about five percent of residential buildings are insulated. Concerning the importance and immediate need in Turkey for energy-efficient residential building retrofitting, this chapter identifies economic benefits of such retrofitting by particularly focusing on heat transfers by conductivity, where the rate can be determined by surface size, thermal resistance of the building materials and their thickness.


2017 ◽  
Vol 7 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Kamalesh Panthi ◽  
Kanchan Das ◽  
Tarek Abdel-Salam

Purpose Vacation rental homes, in general, have different energy usage characteristics than traditional residential homes mainly because of the occupancy pattern that changes on a weekly basis. These homes, predominantly larger in size, offer a greater scope for energy savings also because of the wasteful habits of their seasonal occupants. The purpose of this paper is to investigate the causes of energy inefficiencies prevalent in these homes so that appropriate retrofit choices can be offered to homeowners. Design/methodology/approach This research presents a case study of a vacation rental home whose energy consumption was investigated in depth and energy inefficiencies identified through modeling using energy modeling software, eQUEST. Simulations were performed to identify viable retrofit scenarios. Findings While improvement in the building envelope such as providing shades/overhangs on the windows, reducing infiltration and increasing insulation of the exterior wall did not show promising results for savings on energy cost, other improvements such as use of highly efficient lamps, tank-less water heater system and occupancy sensors showed viable investment options with shorter payback periods. It was also found that energy use intensity of sampled houses was about half of the average of US residential buildings, which could primarily be attributed to the seasonal nature of occupancy of these houses. Originality/value There is a dearth of literature pertaining to energy efficiency-related retrofits of coastal vacation homes. This research fills that gap to some extent by addressing this issue with an ultimate aim of assisting homeowners in retrofit decision-making.


2014 ◽  
Vol 8 (4) ◽  
pp. 477-491 ◽  
Author(s):  
Patrick X.W. Zou ◽  
Rebecca J. Yang

Purpose – This paper aims to investigate residential occupants’ motivations and behaviour on energy savings. Energy consumption in residential buildings is a major contributor to greenhouse gas emissions. Design/methodology/approach – By using an online survey questionnaire instrument, this research collected 504 sets of responses from households in the state of New South Wales, Australia. Findings – Through statistical analysis of the data collected, this research found that construction cost and government incentive were considered as the major influencing factors on achieving energy-efficient residential building development, and the lower bills resulted from the reduced energy and water consumption were considered as the most important benefits. The research also found that many households exhibited a high level of awareness and had implemented some sustainability improvement measures. It is suggested, based on these research findings, that governments should articulate, by means of education, the rationale and benefits of sustainable home development that are identified in this research and reduce material costs and increase government incentives. Originality/value – A framework on improving residential sustainability was proposed in this paper. Stakeholders in the sustainable home supply chain could use this framework as a reference to pave the way for energy efficient home development from their perspective


2012 ◽  
Vol 3 (1) ◽  
pp. 11-17 ◽  
Author(s):  
J. Frijns ◽  
R. Middleton ◽  
C. Uijterlinde ◽  
G. Wheale

Energy costs and climate change challenges the water industry to improve their energy efficiency. The number of examples of energy measures in water production and treatment is growing rapidly. In this paper, best practices of energy efficiency from the European water industry are presented with the objective of learning from each other. The best practices are collected within the framework of the Global Water Research Coalition's attempt to devise a global compendium ‘Best practices in the energy efficient design and operation of water industry assets’. The case studies in the compendium show significant energy savings in all parts of the water cycle. Examples with potential include the improved operational set up of pumping design, on line aeration control, and energy-efficient bubble aerators and sludge belt thickeners. Next to optimising energy efficiency across the water cycle, there are also opportunities for energy generation. Promising practices include biogas production from sludge (co)digestion and hydraulic energy generation from micro-turbines.


2014 ◽  
Vol 60 (3) ◽  
pp. 335-347
Author(s):  
A. Życzyńska ◽  
T. Cholewa

Abstract The energy saving tendencies, in reference to residential buildings, can be recently seen in Europe and in the world. Therefore, there are a lot of studies being conducted aiming to find technical solutions in order to improve the energy efficiency of existing, modernized, and also new buildings. However, there are obligatory solutions and requirements, which must be implemented during designing stage of the building envelope and its heating/cooling system. They are gathered in the national regulations. The paper describes the process of raising the energy standard of buildings between 1974–2021 in Poland. Therefore, the objective of this study is to show energy savings, which can be generated by modernization of thermal insulation of partitions of existing buildings and by the use of different ways of heat supply. The calculations are made on the selected multi-family buildings located in Poland, with the assumption of a 15 years payback time. It is shown that it is not possible to cover the costs of the modernization works by the projected savings with the compliance to the assumption of 15 years payback time.


Author(s):  
Fadi Salah ◽  
Merve Tuna Kayılı

Reducing the energy needs of existing buildings has a significant place in reducing global energy demands. High energy savings can be achieved with passive renovation suggestions in existing buildings. In this study, the effect of the proposed renovations for an educational structure in Safranbolu on the heating and cooling demands of the building was determined with a simulation program. Energy improvements of up to 70 percent have been achieved through passive improvement designs in orientation and insulation material. The highest energy saving (69.31 %) was realized through a scenario of rearranging spaces from the north side to the south side where the number of users is relatively high and selecting a 20 cm aerogel thermal insulation material. While the heating and cooling load, in accordance with the definition of a zero-energy building, could not be reached in this scenario, the study showed the importance of holistic decisions taken in the design phase of the building with respect to energy-efficient building design.


Spatium ◽  
2009 ◽  
pp. 19-22 ◽  
Author(s):  
Aleksandra Krstic-Furundzic ◽  
Vesna Kosoric

Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.


Sign in / Sign up

Export Citation Format

Share Document