scholarly journals Improving Convolutional Neural Networks with Competitive Activation Function

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yao Ying ◽  
Nengbo Zhang ◽  
Ping He ◽  
Silong Peng

The activation function is the basic component of the convolutional neural network (CNN), which provides the nonlinear transformation capability required by the network. Many activation functions make the original input compete with different linear or nonlinear mapping terms to obtain different nonlinear transformation capabilities. Until recently, the original input of funnel activation (FReLU) competed with the spatial conditions, so FReLU not only has the ability of nonlinear transformation but also has the ability of pixelwise modeling. We summarize the competition mechanism in the activation function and then propose a novel activation function design template: competitive activation function (CAF), which promotes competition among different elements. CAF generalizes all activation functions that use competition mechanisms. According to CAF, we propose a parametric funnel rectified exponential unit (PFREU). PFREU promotes competition among linear mapping, nonlinear mapping, and spatial conditions. We conduct experiments on four datasets of different sizes, and the experimental results of three classical convolutional neural networks proved the superiority of our method.

2019 ◽  
Vol 12 (3) ◽  
pp. 156-161 ◽  
Author(s):  
Aman Dureja ◽  
Payal Pahwa

Background: In making the deep neural network, activation functions play an important role. But the choice of activation functions also affects the network in term of optimization and to retrieve the better results. Several activation functions have been introduced in machine learning for many practical applications. But which activation function should use at hidden layer of deep neural networks was not identified. Objective: The primary objective of this analysis was to describe which activation function must be used at hidden layers for deep neural networks to solve complex non-linear problems. Methods: The configuration for this comparative model was used by using the datasets of 2 classes (Cat/Dog). The number of Convolutional layer used in this network was 3 and the pooling layer was also introduced after each layer of CNN layer. The total of the dataset was divided into the two parts. The first 8000 images were mainly used for training the network and the next 2000 images were used for testing the network. Results: The experimental comparison was done by analyzing the network by taking different activation functions on each layer of CNN network. The validation error and accuracy on Cat/Dog dataset were analyzed using activation functions (ReLU, Tanh, Selu, PRelu, Elu) at number of hidden layers. Overall the Relu gave best performance with the validation loss at 25th Epoch 0.3912 and validation accuracy at 25th Epoch 0.8320. Conclusion: It is found that a CNN model with ReLU hidden layers (3 hidden layers here) gives best results and improve overall performance better in term of accuracy and speed. These advantages of ReLU in CNN at number of hidden layers are helpful to effectively and fast retrieval of images from the databases.


Author(s):  
Volodymyr Shymkovych ◽  
Sergii Telenyk ◽  
Petro Kravets

AbstractThis article introduces a method for realizing the Gaussian activation function of radial-basis (RBF) neural networks with their hardware implementation on field-programmable gaits area (FPGAs). The results of modeling of the Gaussian function on FPGA chips of different families have been presented. RBF neural networks of various topologies have been synthesized and investigated. The hardware component implemented by this algorithm is an RBF neural network with four neurons of the latent layer and one neuron with a sigmoid activation function on an FPGA using 16-bit numbers with a fixed point, which took 1193 logic matrix gate (LUTs—LookUpTable). Each hidden layer neuron of the RBF network is designed on an FPGA as a separate computing unit. The speed as a total delay of the combination scheme of the block RBF network was 101.579 ns. The implementation of the Gaussian activation functions of the hidden layer of the RBF network occupies 106 LUTs, and the speed of the Gaussian activation functions is 29.33 ns. The absolute error is ± 0.005. The Spartan 3 family of chips for modeling has been used to get these results. Modeling on chips of other series has been also introduced in the article. RBF neural networks of various topologies have been synthesized and investigated. Hardware implementation of RBF neural networks with such speed allows them to be used in real-time control systems for high-speed objects.


2021 ◽  
Vol 11 (15) ◽  
pp. 6704
Author(s):  
Jingyong Cai ◽  
Masashi Takemoto ◽  
Yuming Qiu ◽  
Hironori Nakajo

Despite being heavily used in the training of deep neural networks (DNNs), multipliers are resource-intensive and insufficient in many different scenarios. Previous discoveries have revealed the superiority when activation functions, such as the sigmoid, are calculated by shift-and-add operations, although they fail to remove multiplications in training altogether. In this paper, we propose an innovative approach that can convert all multiplications in the forward and backward inferences of DNNs into shift-and-add operations. Because the model parameters and backpropagated errors of a large DNN model are typically clustered around zero, these values can be approximated by their sine values. Multiplications between the weights and error signals are transferred to multiplications of their sine values, which are replaceable with simpler operations with the help of the product to sum formula. In addition, a rectified sine activation function is utilized for further converting layer inputs into sine values. In this way, the original multiplication-intensive operations can be computed through simple add-and-shift operations. This trigonometric approximation method provides an efficient training and inference alternative for devices with insufficient hardware multipliers. Experimental results demonstrate that this method is able to obtain a performance close to that of classical training algorithms. The approach we propose sheds new light on future hardware customization research for machine learning.


2021 ◽  
Vol 26 (jai2021.26(1)) ◽  
pp. 32-41
Author(s):  
Bodyanskiy Y ◽  
◽  
Antonenko T ◽  

Modern approaches in deep neural networks have a number of issues related to the learning process and computational costs. This article considers the architecture grounded on an alternative approach to the basic unit of the neural network. This approach achieves optimization in the calculations and gives rise to an alternative way to solve the problems of the vanishing and exploding gradient. The main issue of the article is the usage of the deep stacked neo-fuzzy system, which uses a generalized neo-fuzzy neuron to optimize the learning process. This approach is non-standard from a theoretical point of view, so the paper presents the necessary mathematical calculations and describes all the intricacies of using this architecture from a practical point of view. From a theoretical point, the network learning process is fully disclosed. Derived all necessary calculations for the use of the backpropagation algorithm for network training. A feature of the network is the rapid calculation of the derivative for the activation functions of neurons. This is achieved through the use of fuzzy membership functions. The paper shows that the derivative of such function is a constant, and this is a reason for the statement of increasing in the optimization rate in comparison with neural networks which use neurons with more common activation functions (ReLU, sigmoid). The paper highlights the main points that can be improved in further theoretical developments on this topic. In general, these issues are related to the calculation of the activation function. The proposed methods cope with these points and allow approximation using the network, but the authors already have theoretical justifications for improving the speed and approximation properties of the network. The results of the comparison of the proposed network with standard neural network architectures are shown


2019 ◽  
Vol 28 (01) ◽  
pp. 1950003 ◽  
Author(s):  
Paulo Vitor de Campos Souza ◽  
Luiz Carlos Bambirra Torres ◽  
Augusto Junio Guimarães ◽  
Vanessa Souza Araujo

The use of intelligent models may be slow because of the number of samples involved in the problem. The identification of pulsars (stars that emit Earth-catchable signals) involves collecting thousands of signals by professionals of astronomy and their identification may be hampered by the nature of the problem, which requires many dimensions and samples to be analyzed. This paper proposes the use of hybrid models based on concepts of regularized fuzzy neural networks that use the representativeness of input data to define the groupings that make up the neurons of the initial layers of the model. The andneurons are used to aggregate the neurons of the first layer and can create fuzzy rules. The training uses fast extreme learning machine concepts to generate the weights of neurons that use robust activation functions to perform pattern classification. To solve large-scale problems involving the nature of pulsar detection problems, the model proposes a fast and highly accurate approach to address complex issues. In the execution of the tests with the proposed model, experiments were conducted explanation in two databases of pulsars, and the results prove the viability of the fast and interpretable approach in identifying such involved stars.


Author(s):  
Ameya D. Jagtap ◽  
Kenji Kawaguchi ◽  
George Em Karniadakis

We propose two approaches of locally adaptive activation functions namely, layer-wise and neuron-wise locally adaptive activation functions, which improve the performance of deep and physics-informed neural networks. The local adaptation of activation function is achieved by introducing a scalable parameter in each layer (layer-wise) and for every neuron (neuron-wise) separately, and then optimizing it using a variant of stochastic gradient descent algorithm. In order to further increase the training speed, an activation slope-based slope recovery term is added in the loss function, which further accelerates convergence, thereby reducing the training cost. On the theoretical side, we prove that in the proposed method, the gradient descent algorithms are not attracted to sub-optimal critical points or local minima under practical conditions on the initialization and learning rate, and that the gradient dynamics of the proposed method is not achievable by base methods with any (adaptive) learning rates. We further show that the adaptive activation methods accelerate the convergence by implicitly multiplying conditioning matrices to the gradient of the base method without any explicit computation of the conditioning matrix and the matrix–vector product. The different adaptive activation functions are shown to induce different implicit conditioning matrices. Furthermore, the proposed methods with the slope recovery are shown to accelerate the training process.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0243915
Author(s):  
Vladimír Kunc ◽  
Jiří Kléma

Gene expression profiling was made more cost-effective by the NIH LINCS program that profiles only ∼1, 000 selected landmark genes and uses them to reconstruct the whole profile. The D–GEX method employs neural networks to infer the entire profile. However, the original D–GEX can be significantly improved. We propose a novel transformative adaptive activation function that improves the gene expression inference even further and which generalizes several existing adaptive activation functions. Our improved neural network achieves an average mean absolute error of 0.1340, which is a significant improvement over our reimplementation of the original D–GEX, which achieves an average mean absolute error of 0.1637. The proposed transformative adaptive function enables a significantly more accurate reconstruction of the full gene expression profiles with only a small increase in the complexity of the model and its training procedure compared to other methods.


2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-29
Author(s):  
Zi Wang ◽  
Aws Albarghouthi ◽  
Gautam Prakriya ◽  
Somesh Jha

To verify safety and robustness of neural networks, researchers have successfully applied abstract interpretation , primarily using the interval abstract domain. In this paper, we study the theoretical power and limits of the interval domain for neural-network verification. First, we introduce the interval universal approximation (IUA) theorem. IUA shows that neural networks not only can approximate any continuous function f (universal approximation) as we have known for decades, but we can find a neural network, using any well-behaved activation function, whose interval bounds are an arbitrarily close approximation of the set semantics of f (the result of applying f to a set of inputs). We call this notion of approximation interval approximation . Our theorem generalizes the recent result of Baader et al. from ReLUs to a rich class of activation functions that we call squashable functions . Additionally, the IUA theorem implies that we can always construct provably robust neural networks under ℓ ∞ -norm using almost any practical activation function. Second, we study the computational complexity of constructing neural networks that are amenable to precise interval analysis. This is a crucial question, as our constructive proof of IUA is exponential in the size of the approximation domain. We boil this question down to the problem of approximating the range of a neural network with squashable activation functions. We show that the range approximation problem (RA) is a Δ 2 -intermediate problem, which is strictly harder than NP -complete problems, assuming coNP ⊄ NP . As a result, IUA is an inherently hard problem : No matter what abstract domain or computational tools we consider to achieve interval approximation, there is no efficient construction of such a universal approximator. This implies that it is hard to construct a provably robust network, even if we have a robust network to start with.


Sign in / Sign up

Export Citation Format

Share Document