scholarly journals Value of Magnetic Resonance Diffusion Tensor Imaging Combined with Quantitative Electroencephalogram in Diagnosis of Neurocognitive Impairment in Patients with White Matter Demyelination

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jun Li ◽  
Hongtao Li ◽  
Yun Ma ◽  
Xiaowei Cai ◽  
Yinjie Zhong ◽  
...  

This paper aimed to explore the clinical value of combined adoption of magnetic resonance diffusion tensor imaging (DTI) and quantitative electroencephalogram (QEEG) in assessing microstructure changes and mild neurocognitive dysfunction in patients with white matter demyelination. 128 cases of white matter demyelination admitted to the hospital from October 2018 to October 2019 were rolled into the research group, and 100 healthy patients physically examined during the same period were rolled into the control (ctrl) group. QEEG and magnetic resonance DTI examinations were performed for all patients. The wave power of δ, θ, α, and β and the ratio of α/θ and (δ + θ)/(α + β) were recorded. The FA values of white matter fibers in different brain areas were measured, and the Montreal Cognitive Assessment (MoCA) and Addenbrooke Cognitive Evaluation rating (ACE-R) were adopted to assess the neurocognitive function of patients. It was found that the dominant frequency of each brain area in the research group was 8-9 Hz slow α wave. In contrast with the ctrl, the α wave and α/θ values in the research group were lower, while θ wave and δ + θ/α + β values were higher ( P < 0.05 ); the scores of ACE-R and MoCA were lower ( P < 0.01 ); the fractional anisotropy (FA) values of the right frontal lobe white matter (0.335 ± 0.068), the left temporal lobe white matter (0.391 ± 0.032), and the corpus callosum knee white matter (0.658 ± 0.053) were lower ( P < 0.05 ). The FA values of these three areas were positively correlated with attention and calculation, memory, and memory of MoCA scale, respectively ( P < 0.05 ). The FA value of the right frontal white matter was positively correlated with the attention and calculation score of the ACE-R scale ( P < 0.05 ). In conclusion, magnetic resonance DTI combined with QEEG could reflect the microstructural changes of white matter, which may be associated with mild neurocognitive impairment. The primary objective of the study was to explore the clinical value of combined adoption of magnetic resonance DTI and QEEG in assessing microstructure changes and mild neurocognitive dysfunction in patients with white matter demyelination, expected to provide a theoretical basis for the treatment of white matter demyelination.

2021 ◽  
Author(s):  
Weihong Yuan ◽  
Jonathan Dudley ◽  
Alexis B Slutsky-Ganesh ◽  
James Leach ◽  
Pete Scheifele ◽  
...  

ABSTRACT Introduction Special Weapons and Tactics (SWAT) personnel who practice breaching with blast exposure are at risk for blast-related head trauma. We aimed to investigate the impact of low-level blast exposure on underlying white matter (WM) microstructure based on diffusion tensor imaging (DTI) and neurite orientation and density imaging (NODDI) in SWAT personnel before and after breacher training. Diffusion tensor imaging is an advanced MRI technique sensitive to underlying WM alterations. NODDI is a novel MRI technique emerged recently that acquires diffusion weighted data from multiple shells modeling for different compartments in the microstructural environment in the brain. We also aimed to evaluate the effect of a jugular vein compression collar device in mitigating the alteration of the diffusion properties in the WM as well as its role as a moderator on the association between the diffusion property changes and the blast exposure. Materials and Methods Twenty-one SWAT personnel (10 non-collar and 11 collar) completed the breacher training and underwent MRI at both baseline and after blast exposure. Diffusion weighted data were acquired with two shells (b = 1,000, 2,000 s/mm2) on 3T Phillips scanners. Diffusion tensor imaging metrices, including fractional anisotropy, mean, axial, and radial diffusivity, and NODDI metrics, including neurite density index (NDI), isotropic volume fraction (fiso), and orientation dispersion index, were calculated. Tract-based spatial statistics was used in the voxel-wise statistical analysis. Post hoc analyses were performed for the quantification of the pre- to post-blast exposure diffusion percentage change in the WM regions with significant group difference and for the assessment of the interaction of the relationship between blast exposure and diffusion alteration. Results The non-collar group exhibited significant pre- to post-blast increase in NDI (corrected P &lt; .05) in the WM involving the right internal capsule, the right posterior corona radiation, the right posterior thalamic radiation, and the right sagittal stratum. A subset of these regions showed significantly greater alteration in NDI and fiso in the non-collar group when compared with those in the collar group (corrected P &lt; .05). In addition, collar wearing exhibited a significant moderating effect for the alteration of fiso for its association with average peak pulse pressure. Conclusions Our data provided initial evidence of the impact of blast exposure on WM diffusion alteration based on both DTI and NODDI. The mitigating effect of WM diffusivity changes and the moderating effect of collar wearing suggest that the device may serve as a promising solution to protect WM against blast exposure.


Author(s):  
Piotr Podwalski ◽  
Krzysztof Szczygieł ◽  
Ernest Tyburski ◽  
Leszek Sagan ◽  
Błażej Misiak ◽  
...  

Abstract Diffusion tensor imaging (DTI) is an imaging technique that uses magnetic resonance. It measures the diffusion of water molecules in tissues, which can occur either without restriction (i.e., in an isotropic manner) or limited by some obstacles, such as cell membranes (i.e., in an anisotropic manner). Diffusion is most often measured in terms of, inter alia, fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). DTI allows us to reconstruct, visualize, and evaluate certain qualities of white matter. To date, many studies have sought to associate various changes in the distribution of diffusion within the brain with mental diseases and disorders. A better understanding of white matter integrity disorders can help us recognize the causes of diseases, as well as help create objective methods of psychiatric diagnosis, identify biomarkers of mental illness, and improve pharmacotherapy. The aim of this work is to present the characteristics of DTI as well as current research on its use in schizophrenia, affective disorders, and other mental disorders.


Cephalalgia ◽  
2015 ◽  
Vol 35 (13) ◽  
pp. 1162-1171 ◽  
Author(s):  
Catherine D Chong ◽  
Todd J Schwedt

Background Specific white-matter tract alterations in migraine remain to be elucidated. Using diffusion tensor imaging (DTI), this study investigated whether the integrity of white-matter tracts that underlie regions of the “pain matrix” is altered in migraine and interrogated whether the number of years lived with migraine modifies fibertract structure. Methods Global probabilistic tractography was used to assess the anterior thalamic radiations, the corticospinal tracts and the inferior longitudinal fasciculi in 23 adults with migraine and 18 healthy controls. Results Migraine patients show greater mean diffusivity (MD) in the left and right anterior thalamic radiations, the left corticospinal tract, and the right inferior longitudinal fasciculus tract. Migraine patients also show greater radial diffusivity (RD) in the left anterior thalamic radiations, the left corticospinal tract as well as the left and right inferior longitudinal fasciculus tracts. No group fractional anisotropy (FA) differences were identified for any tracts. Migraineurs showed a positive correlation between years lived with migraine and MD in the right anterior thalamic radiations ( r = 0.517; p = 0.012) and the left corticospinal tract ( r = 0.468; p = 0.024). Conclusion Results indicate that white-matter integrity is altered in migraine and that longer migraine history is positively correlated with greater alterations in tract integrity.


2018 ◽  
Vol 89 (6) ◽  
pp. A10.2-A10
Author(s):  
Colin J Mahoney ◽  
Ivor JA Simpson ◽  
Jennifer M Nicholas ◽  
Jonathan D Rohrer ◽  
Jason D Warren

IntroductionPrimary progressive aphasia (PPA) is characterised by progressive erosion of the language network, and is most commonly associated with frontotemporal lobar degeneration. Few biomarkers exist for diagnosis and tracking of disease progression in PPA. Novel techniques such as diffusion tensor imaging (DTI) may allow early disease detection and monitoring, as well as improving our understanding of the trajectory of PPA.MethodsThirty patients with PPA (13 with non-fluent variant, 11 with semantic variant, 6 with logopenic variant), and 20 age-matched healthy participants were assessed using serial DTI at baseline and on average 1.2 years later. Baseline and follow-up DTI scans were registered using a group-wise approach and a region-of-interest analysis performed for individual white matter tracts. Annualised rates of change for DTI metrics were calculated and compared between groups. Changes in neuro-psychometric scores were correlated with white matter structural changes.ResultsIn the non-fluent group, rates of change in fractional anisotropy were most significant within the right and left superior longitudinal fasciculus (right, −5.7%/year, left, −4.3%/year, p<0.001). In the semantic group, change was most significant in right uncinate fasciculus (−14.8%/year, p<0.001). In the logopenic group, change was most significant in only radial diffusivity, within the right inferior longitudinal fasciculus (6.8% per year increase, p<0.05). Using DTI as an outcome measure, sample size estimates for future treatment trials were generally lower across all syndromic groups compared with volumetric MRI.ConclusionThis study demonstrates the feasibility of longitudinal DTI, identifying rates of disease progression across the spectrum of PPA. Syndrome specific trajectories of disease progression emerged. This highlights the potential use of serial DTI as a disease biomarker in PPA, particular in the design of future treatment trials.


Neurosurgery ◽  
2010 ◽  
Vol 67 (4) ◽  
pp. 901-905 ◽  
Author(s):  
Florian Roser ◽  
Florian Ebner ◽  
Gottlieb Maier ◽  
Marcos Tatagiba ◽  
Thomas Nägele ◽  
...  

Abstract BACKGROUND: Syringomyelia can result in major functional disability. Conventional imaging techniques frequently fail to detect the underlying cause of syringomyelia. The prediction as to whether syringomyelia might lead to neurological deficits is still challenging. OBJECTIVE: We hypothesized that fractional anisotropy (FA) derived from diffusion tensor imaging (DTI) is a parameter to detect dynamic forms of syringomyelia. METHODS: Six patients with cervical syringomyelia, all comparable in size, shape, and location, were examined, along with 2 volunteers. Patients underwent electrophysiological recordings (somatosensory evoked potentials, motor evoked potentials, silent periods). Magnetic resonance imaging (1.5 T) was performed with a 6-element spine coil. Anatomic images were acquired with a 3-dimensional, constructive interference in steady-state sequence, and DTI with an echo-planar imaging sequence (5-mm thickness, b value 800 s/mm2) using the generalized autocalibrating partially parallel acquisitions technique. The positions were centered on the syrinx in the volunteers between the C2 and Th1. DTI data were interpolated to a spatial resolution of 0.5 mm. After calculation of a diffusion tensor in each pixel, an FA map was calculated and profiles of the FA values across the spinal cord were calculated in all slices. RESULTS: FA values were lower at the level of all examined syrinxes and reached normal values beyond them. Electrophysiological results correlated with the decrease in FA value. There were no presyrinx changes in the white matter tracts in terms of signs of FA changes beneath the syrinx. CONCLUSION: DTI of syringomyelia can demonstrate white matter fiber tracts around and beyond the syrinx consistent with electrophysiological values. DTI of the cervical spine can provide quantitative information about the pathological characteristics beyond the abnormalities visible on magnetic resonance imaging.


2013 ◽  
Vol 15 (4) ◽  
pp. 365-376 ◽  
Author(s):  
Louise Emsell ◽  
Camilla Langan ◽  
Wim Van Hecke ◽  
Gareth J Barker ◽  
Alexander Leemans ◽  
...  

2012 ◽  
Vol 33 (6) ◽  
pp. E3 ◽  
Author(s):  
Inga K. Koerte ◽  
David Kaufmann ◽  
Elisabeth Hartl ◽  
Sylvain Bouix ◽  
Ofer Pasternak ◽  
...  

Object The aim of this study was to investigate the effect of repetitive head impacts on white matter integrity that were sustained during 1 Canadian Interuniversity Sports (CIS) ice hockey season, using advanced diffusion tensor imaging (DTI). Methods Twenty-five male ice hockey players between 20 and 26 years of age (mean age 22.24 ± 1.59 years) participated in this study. Participants underwent pre- and postseason 3-T MRI, including DTI. Group analyses were performed using paired-group tract-based spatial statistics to test for differences between preseason and postseason changes. Results Tract-based spatial statistics revealed an increase in trace, radial diffusivity (RD), and axial diffusivity (AD) over the course of 1 season. Compared with preseason data, postseason images showed higher trace, AD, and RD values in the right precentral region, the right corona radiata, and the anterior and posterior limb of the internal capsule. These regions involve parts of the corticospinal tract, the corpus callosum, and the superior longitudinal fasciculus. No significant differences were observed between preseason and postseason for fractional anisotropy. Conclusions Diffusion tensor imaging revealed changes in white matter diffusivity in male ice hockey players over the course of 1 season. The origin of these findings needs to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document