scholarly journals Few-Shot Website Fingerprinting Attack with Data Augmentation

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mantun Chen ◽  
Yongjun Wang ◽  
Zhiquan Qin ◽  
Xiatian Zhu

This work introduces a novel data augmentation method for few-shot website fingerprinting (WF) attack where only a handful of training samples per website are available for deep learning model optimization. Moving beyond earlier WF methods relying on manually-engineered feature representations, more advanced deep learning alternatives demonstrate that learning feature representations automatically from training data is superior. Nonetheless, this advantage is subject to an unrealistic assumption that there exist many training samples per website, which otherwise will disappear. To address this, we introduce a model-agnostic, efficient, and harmonious data augmentation (HDA) method that can improve deep WF attacking methods significantly. HDA involves both intrasample and intersample data transformations that can be used in a harmonious manner to expand a tiny training dataset to an arbitrarily large collection, therefore effectively and explicitly addressing the intrinsic data scarcity problem. We conducted expensive experiments to validate our HDA for boosting state-of-the-art deep learning WF attack models in both closed-world and open-world attacking scenarios, at absence and presence of strong defense. For instance, in the more challenging and realistic evaluation scenario with WTF-PAD-based defense, our HDA method surpasses the previous state-of-the-art results by nearly 3% in classification accuracy in the 20-shot learning case. An earlier version of this work Chen et al. (2021) has been presented as preprint in ArXiv (https://arxiv.org/abs/2101.10063).

2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


2019 ◽  
Vol 2019 (4) ◽  
pp. 292-310 ◽  
Author(s):  
Sanjit Bhat ◽  
David Lu ◽  
Albert Kwon ◽  
Srinivas Devadas

Abstract In recent years, there have been several works that use website fingerprinting techniques to enable a local adversary to determine which website a Tor user visits. While the current state-of-the-art attack, which uses deep learning, outperforms prior art with medium to large amounts of data, it attains marginal to no accuracy improvements when both use small amounts of training data. In this work, we propose Var-CNN, a website fingerprinting attack that leverages deep learning techniques along with novel insights specific to packet sequence classification. In open-world settings with large amounts of data, Var-CNN attains over 1% higher true positive rate (TPR) than state-of-the-art attacks while achieving 4× lower false positive rate (FPR). Var-CNN’s improvements are especially notable in low-data scenarios, where it reduces the FPR of prior art by 3.12% while increasing the TPR by 13%. Overall, insights used to develop Var-CNN can be applied to future deep learning based attacks, and substantially reduce the amount of training data needed to perform a successful website fingerprinting attack. This shortens the time needed for data collection and lowers the likelihood of having data staleness issues.


2021 ◽  
Vol 2021 (2) ◽  
pp. 305-322
Author(s):  
Se Eun Oh ◽  
Nate Mathews ◽  
Mohammad Saidur Rahman ◽  
Matthew Wright ◽  
Nicholas Hopper

Abstract We introduce Generative Adversarial Networks for Data-Limited Fingerprinting (GANDaLF), a new deep-learning-based technique to perform Website Fingerprinting (WF) on Tor traffic. In contrast to most earlier work on deep-learning for WF, GANDaLF is intended to work with few training samples, and achieves this goal through the use of a Generative Adversarial Network to generate a large set of “fake” data that helps to train a deep neural network in distinguishing between classes of actual training data. We evaluate GANDaLF in low-data scenarios including as few as 10 training instances per site, and in multiple settings, including fingerprinting of website index pages and fingerprinting of non-index pages within a site. GANDaLF achieves closed-world accuracy of 87% with just 20 instances per site (and 100 sites) in standard WF settings. In particular, GANDaLF can outperform Var-CNN and Triplet Fingerprinting (TF) across all settings in subpage fingerprinting. For example, GANDaLF outperforms TF by a 29% margin and Var-CNN by 38% for training sets using 20 instances per site.


Author(s):  
Yi-Quan Li ◽  
Hao-Sen Chang ◽  
Daw-Tung Lin

In the field of computer vision, large-scale image classification tasks are both important and highly challenging. With the ongoing advances in deep learning and optical character recognition (OCR) technologies, neural networks designed to perform large-scale classification play an essential role in facilitating OCR systems. In this study, we developed an automatic OCR system designed to identify up to 13,070 large-scale printed Chinese characters by using deep learning neural networks and fine-tuning techniques. The proposed framework comprises four components, including training dataset synthesis and background simulation, image preprocessing and data augmentation, the process of training the model, and transfer learning. The training data synthesis procedure is composed of a character font generation step and a background simulation process. Three background models are proposed to simulate the factors of the background noise and anti-counterfeiting patterns on ID cards. To expand the diversity of the synthesized training dataset, rotation and zooming data augmentation are applied. A massive dataset comprising more than 19.6 million images was thus created to accommodate the variations in the input images and improve the learning capacity of the CNN model. Subsequently, we modified the GoogLeNet neural architecture by replacing the FC layer with a global average pooling layer to avoid overfitting caused by a massive amount of training data. Consequently, the number of model parameters was reduced. Finally, we employed the transfer learning technique to further refine the CNN model using a small number of real data samples. Experimental results show that the overall recognition performance of the proposed approach is significantly better than that of prior methods and thus demonstrate the effectiveness of proposed framework, which exhibited a recognition accuracy as high as 99.39% on the constructed real ID card dataset.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Vol 9 (22) ◽  
pp. 4749
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Linyuan Wang ◽  
Chi Zhang ◽  
Jian Chen ◽  
...  

Decoding human brain activities, especially reconstructing human visual stimuli via functional magnetic resonance imaging (fMRI), has gained increasing attention in recent years. However, the high dimensionality and small quantity of fMRI data impose restrictions on satisfactory reconstruction, especially for the reconstruction method with deep learning requiring huge amounts of labelled samples. When compared with the deep learning method, humans can recognize a new image because our human visual system is naturally capable of extracting features from any object and comparing them. Inspired by this visual mechanism, we introduced the mechanism of comparison into deep learning method to realize better visual reconstruction by making full use of each sample and the relationship of the sample pair by learning to compare. In this way, we proposed a Siamese reconstruction network (SRN) method. By using the SRN, we improved upon the satisfying results on two fMRI recording datasets, providing 72.5% accuracy on the digit dataset and 44.6% accuracy on the character dataset. Essentially, this manner can increase the training data about from n samples to 2n sample pairs, which takes full advantage of the limited quantity of training samples. The SRN learns to converge sample pairs of the same class or disperse sample pairs of different class in feature space.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1052
Author(s):  
Leang Sim Nguon ◽  
Kangwon Seo ◽  
Jung-Hyun Lim ◽  
Tae-Jun Song ◽  
Sung-Hyun Cho ◽  
...  

Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-24
Author(s):  
Yi Zhang ◽  
Yue Zheng ◽  
Guidong Zhang ◽  
Kun Qian ◽  
Chen Qian ◽  
...  

Gait, the walking manner of a person, has been perceived as a physical and behavioral trait for human identification. Compared with cameras and wearable sensors, Wi-Fi-based gait recognition is more attractive because Wi-Fi infrastructure is almost available everywhere and is able to sense passively without the requirement of on-body devices. However, existing Wi-Fi sensing approaches impose strong assumptions of fixed user walking trajectories, sufficient training data, and identification of already known users. In this article, we present GaitSense , a Wi-Fi-based human identification system, to overcome the above unrealistic assumptions. To deal with various walking trajectories and speeds, GaitSense first extracts target specific features that best characterize gait patterns and applies novel normalization algorithms to eliminate gait irrelevant perturbation in signals. On this basis, GaitSense reduces the training efforts in new deployment scenarios by transfer learning and data augmentation techniques. GaitSense also enables a distinct feature of illegal user identification by anomaly detection, making the system readily available for real-world deployment. Our implementation and evaluation with commodity Wi-Fi devices demonstrate a consistent identification accuracy across various deployment scenarios with little training samples, pushing the limit of gait recognition with Wi-Fi signals.


Sign in / Sign up

Export Citation Format

Share Document