scholarly journals Carbon Monoxide-Releasing Molecule-2 Ameliorates Particulate Matter-Induced Aorta Inflammation via Toll-Like Receptor/NADPH Oxidase/ROS/NF-κB/IL-6 Inhibition

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Thi Thuy Tien Vo ◽  
Chien-Yi Hsu ◽  
Yinshen Wee ◽  
Yuh-Lien Chen ◽  
Hsin-Chung Cheng ◽  
...  

Particulate matter (PM), a major air pollutant, may be associated with adverse cardiovascular effects. Reactive oxygen species- (ROS-) dependent proinflammatory cytokine production, such as interleukin-6 (IL-6), is a possible underlying mechanism. Carbon monoxide- (CO-) releasing molecule-2 (CORM-2) which liberates exogenous CO can exert many beneficial effects, particularly anti-inflammation and antioxidant effects. The purpose of this study was to explore the protective effects and underpinning mechanisms of CORM-2 on PM-induced aorta inflammation. Here, human aortic vascular smooth muscle cells (HASMCs) were utilized as in vitro models for the assessment of signaling pathways behind CORM-2 activities against PM-induced inflammatory responses, including Toll-like receptors (TLRs), NADPH oxidase, ROS, nuclear factor-kappa B (NF-κB), and IL-6. The modulation of monocyte adherence and HASMC migration, that are two critical cellular events of inflammatory process, along with their regulators, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) and MMP-9, in response to PM by CORM-2, were further evaluated. Finally, mice experiments under different conditions were conducted for the in vivo evaluation of CORM-2 benefits on the expression of inflammatory molecules including IL-6, ICAM-1, VCAM-1, MMP-2, and MMP-9. Our results found that PM could induce aorta inflammation in vitro and in vivo, as evidenced by the increase of IL-6 expression that was regulated by the TLR2 and TLR4/NADPH oxidase/ROS/NF-κB signaling pathway, thereby promoting ICAM-1- and VCAM-1-dependent monocyte adhesion and MMP-2- and MMP-9-dependent HASMC migration. Importantly, our experimental models demonstrated that CORM-2-liberated CO effectively inhibited the whole identified PM-induced inflammatory cascade in HASMCs and tissues. In conclusion, CORM-2 treatment may elicit multiple beneficial effects on inflammatory responses of aorta due to PM exposure, thereby providing therapeutic value in the context of inflammatory diseases of the cardiovascular system.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3322 ◽  
Author(s):  
Xuguang Li ◽  
Tianyi Yuan ◽  
Di Chen ◽  
Yucai Chen ◽  
Shuchan Sun ◽  
...  

Puerarin is a well-known traditional Chinese medicine which has been used for the treatment of cardiovascular diseases. Recently, a new advantageous crystal form of puerarin, puerarin-V, has been developed. However, the cardioprotective effects of puerarin-V on myocardial infarction (MI) heart failure are still unclear. In this research, we aim to evaluate the cardioprotective effects of puerarin-V on the isoproterenol (ISO)-induced MI mice and elucidate the underlying mechanisms. To induce MI in C57BL/6 mice, ISO was administered at 40 mg/kg subcutaneously every 12 h for three times in total. The mice were randomly divided into nine groups: (1) control; (2) ISO; (3) ISO + puerarin injection; (4–9) ISO + puerarin-V at different doses and timings. After treatment, cardiac function was evaluated by electrocardiogram (ECG), biochemical and histochemical analysis. In vitro inflammatory responses and apoptosis were evaluated in human coronary artery endothelial cells (HCAECs) challenged by lipopolysaccharide (LPS). LPS-induced PPAR-Υ/NF-κB and subsequently activation of cytokines were assessed by the western blot and real-time polymerase chain reaction (PCR). Administration of puerarin-V significantly inhibits the typical ST segment depression compared with that in MI mice. Further, puerarin-V treatment significantly improves ventricular wall infarction, decreases the incidence of mortality, and inhibits the levels of myocardial injury markers. Moreover, puerarin-V treatment reduces the inflammatory milieu in the heart of MI mice, thereby blocking the upregulation of proinflammatory cytokines (TNF-α, IL-1β and IL-6). The beneficial effects of puerarin-V might be associated with the normalization in gene expression of PPAR-Υ and PPAR-Υ/NF-κB /ΙκB-α/ΙΚΚα/β phosphorylation. In the in vitro experiment, treatment with puerarin-V (0.3, 1 and 3 μM) significantly reduces cell death and suppresses the inflammation cytokines expression. Likewise, puerarin-V exhibits similar mechanisms. The cardioprotective effects of puerarin-V treatment on MI mice in the pre + post-ISO group seem to be more prominent compared to those in the post-ISO group. Puerarin-V exerts cardioprotective effects against ISO-induced MI in mice, which may be related to the activation of PPAR-γ and the inhibition of NF-κB signaling in vivo and in vitro. Taken together, our research provides a new therapeutic option for the treatment of MI in clinic.


2019 ◽  
Vol 133 (11) ◽  
pp. 1215-1228 ◽  
Author(s):  
Yu Sun ◽  
Juan Guan ◽  
Yunfeng Hou ◽  
Fei Xue ◽  
Wei Huang ◽  
...  

Abstract Background: Although junctional adhesion molecule-like protein (JAML) has recently been implicated in leukocyte recruitment during inflammation and wound repair, its role in atherosclerosis remains to be elucidated. Methods and results: First, we showed that JAML was strongly expressed in atherosclerotic plaques of cardiovascular patients. Similar results were obtained with atherosclerotic plaques of ApoE−/− mice. Co-immunofluorescence staining showed that JAML was mainly expressed in macrophages. Enhanced expression of JAML in cultured macrophages was observed following exposure of the cells to oxLDL. The functional role of JAML in atherosclerosis and macrophages function was assessed by interference of JAML with shRNA in vivo and siRNA in vitro. Silencing of JAML in mice significantly attenuated atherosclerotic lesion formation, reduced necrotic core area, increased plaque fibrous cap thickness, decreased macrophages content and inflammation. In addition, histological staining showed that JAML deficiency promoted plaques to stable phenotype. In vitro, JAML siRNA treatment lowered the expression of inflammatory cytokines in macrophages treated with oxLDL. The mechanism by which JAML mediated the inflammatory responses may be related to the ERK/NF-κB activation. Conclusions: Our results demonstrated that therapeutic drugs which antagonize the function of JAML may be a potentially effective approach to attenuate atherogenesis and enhance plaque stability.


2015 ◽  
Vol 309 (12) ◽  
pp. L1387-L1393 ◽  
Author(s):  
Kiichi Nakahira ◽  
Augustine M. K. Choi

Carbon monoxide (CO), a low-molecular-weight gas, is endogenously produced in the body as a product of heme degradation catalyzed by heme oxygenase (HO) enzymes. As the beneficial roles of HO system have been elucidated in vitro and in vivo, CO itself has also been reported as a potent cytoprotective molecule. Whereas CO represents a toxic inhalation hazard at high concentration, low-dose exogenous CO treatment (∼250–500 parts per million) demonstrates protective functions including but not limited to the anti-inflammatory and antiapoptotic effects in preclinical models of human diseases. Of note, CO exposure confers protection in animal models of sepsis by inhibiting inflammatory responses and also enhancing bacterial phagocytosis in leukocytes. These unique functions of CO including both dampening inflammation and promoting host defense mechanism are mediated by multiple pathways such as autophagy induction or biosynthesis of specialized proresolving lipid mediators. We suggest that CO gas may represent a novel therapy for patients with sepsis.


2008 ◽  
Vol 20 (3) ◽  
pp. 319-337 ◽  
Author(s):  
Konrad Ludwig Maier ◽  
Francesca Alessandrini ◽  
Ingrid Beck-Speier ◽  
Thomas Philipp Josef Hofer ◽  
Silvia Diabaté ◽  
...  

2020 ◽  
Author(s):  
Pengbo Sun ◽  
Yipei Ding ◽  
Jingyi Luo ◽  
Jin Zhong ◽  
Weidong Xie

Abstract BackgroundLipotoxicity plays an important role in the development of diabetic cardiomyopathy and heart failure (HF). Canagliflozin (CAN), a marketed sodium-glucose co-transporter 2 inhibitor, has significant beneficial effects on HF. However, the potential pharmacological mechanism is still unknown.MethodsIn this study, we evaluated the protective effects and mechanism of CAN in the hearts of a C57BL/6J diabetic mouse model induced by a high-fat diet/streptozotocin (HFD/STZ) for 12 weeks in vivo and using HL-1 cells (a type of mouse cardiomyocyte line) induced by palmitic acid (PA) in vitro.ResultsCAN could significantly alleviate lipid accumulation and inflammatory responses in the hearts of the HFD/STZ-induced diabetic mice. Furthermore, CAN significantly attenuated the inflammatory injury induced by PA in the HL-1 cells. In addition, CAN bound to the mammalian target of rapamycin (mTOR) and significantly inhibited mTOR phosphorylation and hypoxia inducible factor-1α (HIF-1α) expression.ConclusionCAN attenuated lipotoxicity in cardiomyocytes and protected diabetic mouse hearts by targeting the mTOR/HIF-1α pathway.


2020 ◽  
Vol 328 ◽  
pp. 52-60 ◽  
Author(s):  
Wanjun Yuan ◽  
Ciara C. Fulgar ◽  
Xiaolin Sun ◽  
Christoph F.A. Vogel ◽  
Ching-Wen Wu ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 502
Author(s):  
Carmine Giorgio ◽  
Marika Allodi ◽  
Simone Palese ◽  
Andrea Grandi ◽  
Massimiliano Tognolini ◽  
...  

Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn’s disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses.


2007 ◽  
Vol 292 (5) ◽  
pp. L1111-L1125 ◽  
Author(s):  
Hiam Abdala-Valencia ◽  
Julie Earwood ◽  
Shelly Bansal ◽  
Michael Jansen ◽  
George Babcock ◽  
...  

Pulmonary eosinophilia is one of the most consistent hallmarks of asthma. Infiltration of eosinophils into the lung in experimental asthma is dependent on the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells. Ligation of VCAM-1 activates endothelial cell NADPH oxidase, which is required for VCAM-1-dependent leukocyte migration in vitro. To examine whether endothelial-derived NADPH oxidase modulates eosinophil recruitment in vivo, mice deficient in NADPH oxidase (CYBB mice) were irradiated and received wild-type hematopoietic cells to generate chimeric CYBB mice. In response to ovalbumin (OVA) challenge, the chimeric CYBB mice had increased numbers of eosinophils bound to the endothelium as well as reduced eosinophilia in the lung tissue and bronchoalveolar lavage. This occurred independent of changes in VCAM-1 expression, cytokine/chemokine levels (IL-5, IL-10, IL-13, IFNγ, or eotaxin), or numbers of T cells, neutrophils, or mononuclear cells in the lavage fluids or lung tissue of OVA-challenged mice. Importantly, the OVA-challenged chimeric CYBB mice had reduced airway hyperresponsiveness (AHR). The AHR in OVA-challenged chimeric CYBB mice was restored by bypassing the endothelium with intratracheal administration of eosinophils. These data suggest that VCAM-1 induction of NADPH oxidase in the endothelium is necessary for the eosinophil recruitment during allergic inflammation. Moreover, these studies provide a basis for targeting VCAM-1-dependent signaling pathways in asthma therapies.


2020 ◽  
Vol 19 (2) ◽  
pp. 164-171
Author(s):  
Feng Xue ◽  
Tingting Chen

Glioblastoma multiforme is the most common malignancy of central nervous system. Herein we have evaluated the effect of L-tetrahydropalmatine, an isoquinoline alkaloid, on the tumor growth both in vivo and in vitro using C6 glioblastoma multiforme cells and BALB/c mice injected subcutaneously with C6/luc2 cells. The results of these studies show that L-tetrahydropalmatine exhibited cytotoxic effect on C6 glioblastoma multiforme cells, suppressed nuclear factor-kappa B activity, suppressed the levels of tumor-linked proteins such as matrix metalloproteinase-2/9, Cyclin-D1, vascular endothelial growth factor, and X-linked inhibitor of apoptosis protein via ERK/nuclear factor-kappa B cascade. Further, L-tetrahydropalmatine inhibited the cell migration and invasion properties of C6 cells, and also suppressed the tumor weight and volume in mice. Immunohistochemical staining of tumor tissues suggested that L-tetrahydropalmatine inhibited the extracellular-signal-regulated kinase/nuclear factor-kappa B cascade and suppressed the levels of Cyclin-D1; matrix metalloproteinase-2/9; X-linked inhibitor of apoptosis protein; and vascular endothelial growth factor, and also the progression and growth of glioblastoma multiforme in mice. In summary, L-tetrahydropalmatine inhibits the ERK/nuclear factor-kappa B cascade, decreases the tumor volume, and inhibits the proteins responsible for tumor growth both in vivo and in vitro.


Sign in / Sign up

Export Citation Format

Share Document