scholarly journals Angle-Resolved Intensity of In-Axis/Off-Axis Polarized Micro-Raman Spectroscopy for Monocrystalline Silicon

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ying Chang ◽  
Saisai He ◽  
Mingyuan Sun ◽  
Aixia Xiao ◽  
Jiaxin Zhao ◽  
...  

Monocrystalline silicon (c-Si) is still an important material related to microelectronics/optoelectronics. The nondestructive measurement of the c-Si material and its microstructure is commonly required in scientific research and industrial applications, for which Raman spectroscopy is an indispensable method. However, Raman measurements based on the specific fixed Raman geometry/polarization configuration are limited for the quantified analysis of c-Si performance, which makes it difficult to meet the high-end requirements of advanced silicon-based microelectronics and optoelectronics. Angle-resolved Raman measurements have become a new trend of experimental analysis in the field of materials, physics, mechanics, and optics. In this paper, the characteristics of the angle-resolved polarized Raman scattering of c-Si under the in-axis and off-axis configurations are systematically analyzed. A general theoretical model of the angle-resolved Raman intensity is established, which includes several alterable angle parameters, including the inclination angle, rotation angle of the sample, and polarization directions of the incident laser and scattered light. The diversification of the Raman intensity is given at different angles for various geometries and polarization configurations. The theoretical model is verified and calibrated by typical experiments. In addition, this work provides a reliable basis for the analysis of complex polarized Raman experiments on silicon-based structures.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 626
Author(s):  
Ying Chang ◽  
Aixia Xiao ◽  
Rubing Li ◽  
Miaojing Wang ◽  
Saisai He ◽  
...  

Raman spectroscopy is an indispensable method for the nondestructive testing of semiconductor materials and their microstructures. This paper presents a study on the angle-resolved intensity of polarized micro-Raman spectroscopy for a 4H silicon carbide (4H-SiC) wafer. A generalized theoretical model of polarized Raman intensity was established by considering the birefringence effect. The distributions of angle-resolved Raman intensities were achieved under normal and oblique backscattering configurations. Experiments were performed on a self-built angle-resolved Raman system, which verified the validity of the proposed model and achieved the identification of crystal orientations of the 4H-SiC sample.


2014 ◽  
Vol 778-780 ◽  
pp. 1166-1169
Author(s):  
Felix Fromm ◽  
Martin Hundhausen ◽  
Michl Kaiser ◽  
Thomas Seyller

Raman spectroscopy is commonly applied for studying the properties of epitaxial graphene on silicon carbide (SiC). In principle, the Raman intensity of a single graphene layer is rather low compared to the signal of SiC. In this work we follow an approach to improve the Raman intensity of epitaxial graphene on SiC by recording Raman spectra in a top-down geometry, i.e. a geometry in which the graphene layer is probed with the excitation through the SiC substrate [1]. This technique takes advantage of the fact, that most of the Raman scattered light of the graphene is emitted into the SiC substrate. We analyze in detail the top-down measurement geometry regarding the graphene and SiC Raman intensity, as well as the influence of aberration effects caused by the refraction at the air/SiC interface.


2021 ◽  
Author(s):  
Mingge Jin ◽  
Lu Cheng ◽  
Wei Zheng ◽  
Ying Ding ◽  
Yanming Zhu ◽  
...  

Abstract Since the first record of Raman spectra of graphite in 1970, the physical origin behind its Raman characteristic peaks (i.e., G, D and D' peaks) has been a focus of controversy. At present, it is generally believed that G peak corresponds to Raman active E 2g2 mode, while D and D' peaks are defect-induced ones. However, unequivocal experimental evidence for the phonon symmetries for these graphite Raman peaks is almost still in blank. Here, we clarify these important aspects using an angle resolved polarized Raman spectroscopy. It is found that the experimental Raman intensity of D and D' peaks shows a similar polarized angle dependence as that of G peak. Combined with Raman tensor analysis and double-resonant mechanism, the phonon symmetry of D' and D peak is further understood. Our work provides reliable experimental evidence and reasonable explanation for better understanding the phonon symmetry of graphite.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 483
Author(s):  
Francisco J. Rivero ◽  
Leonardo Ciaccheri ◽  
M. Lourdes González-Miret ◽  
Francisco J. Rodríguez-Pulido ◽  
Andrea A. Mencaglia ◽  
...  

Overripe seeds from sun-dried grapes submitted to postharvest dehydration constitute a scarcely investigated class of vinification byproduct with limited reports on their phenolic composition and industrial applications. In this study, Raman spectroscopy was applied to characterize a selection of overripe seed byproducts from different white grapes (cv. Moscatel, cv. Pedro Ximénez and cv. Zalema) submitted to postharvest sun drying. The Raman measurements were taken using a 1064 nm excitation laser in order to mitigate the fluorescent effect and the dispersive detection scheme allowed a compactness of the optical system. Spectroscopic data were processed by a principal component analysis to reduce the dimensionality and partner recognition. The evolution of the Raman spectrum during the overripening process was compared with the phenolic composition of grape seeds, which was determined by rapid resolution liquid chromatography/mass spectrometry (RRLC/MS). A multivariate processing of the spectroscopic data allowed the classification of overripe seeds according to the grape variety and the monitoring of stages of the postharvest sun drying process.


2016 ◽  
Vol 93 (22) ◽  
Author(s):  
C. Weigel ◽  
M. Foret ◽  
B. Hehlen ◽  
M. Kint ◽  
S. Clément ◽  
...  

2013 ◽  
Vol 634-638 ◽  
pp. 1794-1797
Author(s):  
Ho Seob Yun ◽  
Joon Sik Park ◽  
Jeong Min Kim ◽  
Ki Tae Kim

Aluminum-Silicon based die-casting alloys have been extensively utilized in various industrial applications, but their relatively low electrical and thermal conductivities make them unsuitable as high conductivity parts. In this research, silicon content was restricted to a comparatively low level for higher conductivity and magnesium was added to enhance the castabilities. Al-1Fe-0.5Si-xMg alloys showed significantly higher electrical conductivity than conventional Al-Si based alloys. As the Mg content was increased, the mold filling ability measured using a fluidity serpentine test mold was a little decreased, however the hot cracking susceptibility was observed to be first increased and then decreased. The relationship between solidification characteristics and castabilities of Al-1Fe-0.5Si-xMg alloys was discussed based on the cooling curve analysis and microstructural characterization results.


2002 ◽  
Vol 56 (7) ◽  
pp. 809-812 ◽  
Author(s):  
P. R. Griffiths ◽  
D. B. Chase ◽  
R. M. Ikeda ◽  
J. W. Catron

The response of materials under stress is a critical aspect of the in-use performance of fibers and films. Dynamic infrared measurements have been shown to be very informative and have provided information about both chain reorientation and conformational state change during deformation. However, the use of infrared transmission techniques necessarily confines the measurements to thin films. Polymeric fibers present a real challenge to this approach. Raman scattering is extremely well suited for fibers. There is no real constraint on sample size, shape, or thickness. Dynamic measurements on fibers under deformation have been extended using a Raman probe. Step-scan FT-Raman spectroscopy has allowed the decoupling of the sample strain frequencies from the Fourier frequencies, and the sensitivity is sufficient to observe the small changes associated with an elastic tensile deformation. For polyethylene fibers, the dynamic spectra exhibit both stress-induced frequency shifts and intensity changes due to chain reorientation. Vibrational modes that are coupled to chain backbone motions are found to exhibit the strongest stress-induced frequency shifts, while decoupled motions, such as C–H stretching modes, exhibit the effects of chain reorientation.


Sign in / Sign up

Export Citation Format

Share Document