scholarly journals Virtual Spatial Channel Number and Index Modulation

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zahid Iqbal ◽  
Fei Ji ◽  
Yun Liu

This paper proposes a novel precoding-aided and efficient data transmission scheme called virtual spatial channel number and index modulation (VS-CNIM), which conveys extra data by changing both the number and index of active virtual parallel channels of multiple-input multiple-output (MIMO) channels, obtained through the singular value decomposition (SVD) in each time slot. Unlike the conventional virtual spatial modulation (VSM), where extra data bits are transmitted only using index of active virtual parallel channels, the VS-CNIM scheme, depending on incoming information bits, transmits extra bits utilizing both the number and indices of active parallel channels along the bits carried by M -ary constellation symbols. Therefore, VS-CNIM provides significantly superior spectral efficiency (SE) compared to VSM. Considering the influence of imperfect channel estimation, a closed-form upper bound is derived on average bit error probability (ABEP). The asymptotic performance is also analyzed, which gives the coding gain and diversity order and describes error floor under the consideration of perfect and imperfect channel estimation, respectively. Monte Carlo simulations exhibit that the VS-CNIM scheme achieves considerably better error performance and high SE than precoding-aided SM (PSM) and VSM schemes.

Author(s):  
T. Cogalan ◽  
H. Haas ◽  
E. Panayirci

Visible light communication (VLC) systems are inherently signal-to-noise ratio (SNR) limited due to link budget constraints. One favourable method to overcome this limitation is to focus on the pre-log factors of the channel capacity. Multiple-input multiple-output (MIMO) techniques are therefore a promising avenue of research. However, inter-channel interference in MIMO limits the achievable capacity. Spatial modulation (SM) avoids this limitation. Furthermore, the performance of MIMO systems in VLC is limited by the similarities among spatial channels. This limitation becomes particularly severe in intensity modulation/direct detection (IM/DD) systems because of the lack of phase information. The motivation of this paper is to propose a system that results in a multi-channel transmission system that enables reliable multi-user optical MIMO SM transmission without the need for a precoder, power allocation algorithm or additional optics at the receiver. A general bit error performance model for the SM system is developed for an arbitrary number of light-emitting diodes (LEDs) in conjunction with pulse amplitude modulation. Based on this model, an LED array structure is designed to result in spatially separated multiple channels by manipulating the transmitter geometry. This article is part of the theme issue ‘Optical wireless communication’.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoyan Xu ◽  
Jianjun Wu ◽  
Shubo Ren ◽  
Lingyang Song ◽  
Haige Xiang

We introduce the superimposed training strategy into the multiple-input multiple-output (MIMO) amplify-and-forward (AF) one-way relay network (OWRN) to perform the individual channel estimation at the destination. Through the superposition of a group of additional training vectors at the relay subject to power allocation, the separated estimates of the source-relay and relay-destination channels can be obtained directly at the destination, and the accordance with the two-hop AF strategy can be guaranteed at the same time. The closed-form Bayesian Cramér-Rao lower bound (CRLB) is derived for the estimation of two sets of flat-fading MIMO channel under random channel parameters and further exploited to design the optimal training vectors. A specific suboptimal channel estimation algorithm is applied in the MIMO AF OWRN using the optimal training sequences, and the normalized mean square error performance for the estimation is provided to verify the Bayesian CRLB results.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Athar Waseem ◽  
Aqdas Naveed ◽  
Sardar Ali ◽  
Muhammad Arshad ◽  
Haris Anis ◽  
...  

Massive multiple-input multiple-output (MIMO) is believed to be a key technology to get 1000x data rates in wireless communication systems. Massive MIMO occupies a large number of antennas at the base station (BS) to serve multiple users at the same time. It has appeared as a promising technique to realize high-throughput green wireless communications. Massive MIMO exploits the higher degree of spatial freedom, to extensively improve the capacity and energy efficiency of the system. Thus, massive MIMO systems have been broadly accepted as an important enabling technology for 5th Generation (5G) systems. In massive MIMO systems, a precise acquisition of the channel state information (CSI) is needed for beamforming, signal detection, resource allocation, etc. Yet, having large antennas at the BS, users have to estimate channels linked with hundreds of transmit antennas. Consequently, pilot overhead gets prohibitively high. Hence, realizing the correct channel estimation with the reasonable pilot overhead has become a challenging issue, particularly for frequency division duplex (FDD) in massive MIMO systems. In this paper, by taking advantage of spatial and temporal common sparsity of massive MIMO channels in delay domain, nonorthogonal pilot design and channel estimation schemes are proposed under the frame work of structured compressive sensing (SCS) theory that considerably reduces the pilot overheads for massive MIMO FDD systems. The proposed pilot design is fundamentally different from conventional orthogonal pilot designs based on Nyquist sampling theorem. Finally, simulations have been performed to verify the performance of the proposed schemes. Compared to its conventional counterparts with fewer pilots overhead, the proposed schemes improve the performance of the system.


2020 ◽  
Vol 11 (1) ◽  
pp. 330
Author(s):  
Sheriff Murtala ◽  
Nishal Muchena ◽  
Tasnim Holoubi ◽  
Manar Mohaisen ◽  
Kang-Sun Choi

In this paper, we propose a new multiple-input multiple-output (MIMO) transmission scheme, called parallel complex quadrature spatial modulation (PCQSM). The proposed technique is based on the complex quadrature spatial modulation (CQSM) to further increase the spectral efficiency of the communication system. CQSM transmits two different complex symbols at each channel use. In contrast with CQSM, the new transmission scheme splits the transmit antennas into groups, and modulates the two signal symbols using the conventional CQSM before transmission. Based on the selected modulation order and the number of possible groups that can be realized, the incoming bits modulate the two signal symbols and the indices of the transmit antennas in each group. We demonstrated that while the complexity and performance of the proposed scheme is the same as that of CQSM, the number of required transmit antennas is significantly reduced. The proposed PCQSM achieves such a benefit without requiring any additional radio frequency (RF) chains. The results obtained from Monte Carlo simulation showed that at a Bit Error Rate (BER) of 10−4, the performance of the PCQSM with two antenna groups closely matches that of CQSM, and outperformed quadrature spatial modulation (QSM) and parallel quadrature spatial modulation (PQSM) by over 0.7 dB. As the number of antenna groups increased to 4, the BER performance of PCQSM with reduced number of transmit antenna and modulation order matches that of QSM. The BER of the proposed scheme using maximum likelihood (ML) receiver is also analyzed theoretically and compared with the BER obtained via simulations.


Author(s):  
Lê Thị Thanh Huyền ◽  
Trần Xuân Nam

In this paper, a new Space-Time Block Coded Spatial Modulation (SM) scheme based on the Golden Code, called the In this paper, we evaluate the symbol error performance of an extended Index Modulation for Orthogonal Frequency Division Multiplexing (IM-OFDM), namely repeated index modulation-OFDM with coordinated interleaving (abbreviated as ReCI), over the Nakagami-m fading channel. The ReCI system attains higher error performance than the conventional IM-OFDM with coordinate interleaving (IMOFDM-CI). In order to investigate the system performance over the Nakagami-m fading channel, we derive the closed-form expressions for the symbol error probability (SEP) and the bit error probability (BEP). The analytical results give interesting insights into the dependence of SEP on system parameters. Their tightness is also validated by numerical results, which show that our proposed scheme can provide considerably better error performance than the conventional IM-OFDM and IM-OFDM-CI at the same spectral efficiency.


Author(s):  
О.Н. Чирков

Рассматриваются методы оценки канала связи с пространственной модуляцией. Данный вид модуляции представляет собой методику однопотоковой передачи данных с несколькими входами и несколькими выходами (MIMO), при которой одновременно активируется только одна передающая антенна. Пространственная модуляция позволяет добиться полного исключения межканальных помех, а также демонстрирует большую экономию энергии в радиочастотной цепи. Однако, в отличие от многопоточных систем MIMO, оценка канала для пространственной модуляции становится проблемой, поскольку канал MIMO не может быть оценен на одном этапе передачи по единственному потоку. На основании этого факта была предложена новая схема оценки канала, которая использует корреляцию каналов и совместно оценивает каналы для разных передающих антенн. Предложенный метод обеспечивает тот же период оценки, что и многопоточные схемы MIMO. Исследовано изменение количества передаваемых пилот-сигналов при пространственной модуляции как для традиционных, так и для новых методов оценки канала связи. Уравновешивая точность и объем данных, можно достичь оптимального отношения пилот-сигналов для максимальной пропускной способности канала. Результаты моделирования показывают, что новый подход оценки превосходит традиционный метод с гораздо более низким оптимальным коэффициентом количества пилотов The article considers methods for estimating a communication channel with spatial modulation. This type of modulation is a single-stream multiple-input multiple-output (MIMO) technique in which only one transmit antenna is activated at a time. Spatial modulation allows for complete elimination of inter-channel interference, and also demonstrates great energy savings in the RF circuit. However, unlike multi-stream MIMO systems, channel estimation for spatial modulation becomes a problem because a MIMO channel cannot be estimated in a single transmission step on a single stream. Based on this fact, I proposed a new channel estimation scheme that uses channel correlation and jointly estimates channels for different transmit antennas. The proposed method provides the same evaluation period as multithreaded MIMO schemes. The change in the number of transmitted pilot-signals with spatial modulation is investigated for both traditional and new methods of estimation of the communication channel. By balancing accuracy and data volume, an optimal pilot signal ratio can be achieved for maximum channel throughput. Simulation results show that the new scoring approach outperforms the traditional method with a much lower optimal pilot count ratio


Sign in / Sign up

Export Citation Format

Share Document