scholarly journals Aerobics Action Recognition Algorithm Based on Three-Dimensional Convolutional Neural Network and Multilabel Classification

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qian Wang ◽  
Mingzhe Wang

In the context of modern people increasingly paying attention to health and promoting aerobics, the amount of data and audiences of aerobics videos has grown rapidly, and its potential application value has attracted widespread attention from scientific research and industry perspectives. This article has integrated computer vision and deep learning related knowledge to realize the intelligent recognition and representation of specific human movements in aerobics video sequences. The study proposes an automatic recognition method for floor exercise videos based on three-dimensional convolutional networks and multilabel classification. Since two-dimensional convolutional neural networks (CNNs) lose time information when extracting features, so to overcome this, the proposed research uses three-dimensional convolutional networks to perform video recognition. The feature is taken in time and space, and the extracted features are subjected to multiple binary classifications to achieve the goal of multilabel classification. Various comparison and simulation experiments are conducted for the proposed research, and the experimental results prove the effectiveness and superiority of the approach.


2011 ◽  
Vol 121-126 ◽  
pp. 1886-1890
Author(s):  
Ke Yong Wang ◽  
Shi Kai Xing

Target image recognition is an important issue in the information processing of imaging fuse system. In the paper, the main frame is proposed which can solve the problem of target image recognition and many computer simulation experiments are carried out. A recognition algorithm based on ant colony optimization and neural network is proposed. It overcomes the shortcomings of traditional BP algorithm and converges fast. The results of experiments prove that the presented algorithm can shorten the training time effectively and increase the accuracy of recognition, so it is very useful in improving the effective destroying ability of the missile.



2021 ◽  
Vol 2093 (1) ◽  
pp. 012020
Author(s):  
Jiawei HUANG ◽  
Caixia BI ◽  
Jiayue LIU ◽  
Shaohua DONG

Abstract The existing technology of automatic classification and recognition of welding negative images by computer is difficult to achieve a multiple classification defect recognition while maintaining a high recognition accuracy, and the developed automatic recognition model of negative image defect cannot meet the actual needs of the field. Therefore, the convolutional neural network (CNN)-based intelligent recognition algorithm for negative image of weld defects is proposed, and a B/S (Browser/Server) architecture of weld defect feature image database combined with CNN is established subsequently, which converted from the existing CNN by the migration learning method. It makes full use of the negative big data and simplifies the algorithm development process, so that the recognition algorithm has a better generalization ability and the training algorithm accuracy of 97.18% achieved after training. The results of the comparison experiments with traditional recognition algorithms show that the CNN-based intelligent recognition algorithm for defective weld negatives has an accuracy of 92.31% for dichotomous defects, which is significantly better than the traditional recognition algorithm, the established recognition algorithm effectively improving the recognition accuracy and achieving multi-category defect recognition. At the same time, the CNN-based defect recognition method was established by combining the image segmentation algorithm and the defect intelligent recognition algorithm, which was applied to the actual negative images in the field with good results, further verifying the feasibility of CNN-based intelligent recognition algorithm in the field of defect recognition of welding negative images.



2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wang Lu ◽  
JiangYuan Hou

Current methods of human body movement recognition neglect the depth denoising and edge restoration of movement image, which leads to great error in athletes’ wrong movement recognition and poor application intelligence. Therefore, an intelligent recognition method based on image vision for sports athletes’ wrong actions is proposed. The basic principle, structure, and 3D application of computer image vision technology are defined. Capturing the human body image and point cloud data, the three-dimensional dynamic model of sports athletes action is constructed. The color camera including CCD sensor and CMOS sensor is selected to collect the wrong movement image of athlete and provide image data for the recognition of wrong movement. Wavelet transform coefficient and quantization matrix threshold are introduced to denoise the wrong motion images of athletes. Based on this, the feature of sports athlete’s motion contour image is extracted in spatial frequency domain, and the edge of the image is further recovered by Canny operator. Experimental results show that the proposed method can accurately identify the wrong movements of athletes, and there is no redundancy in the recognition results. Image denoising effect is good and less time-consuming and can provide a reliable basis for related fields.



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yixue Lin ◽  
Wanda Chi ◽  
Wenxue Sun ◽  
Shicai Liu ◽  
Di Fan

Human action recognition is an important part for computers to understand the behavior of people in pictures or videos. In a single image, there is no context information for recognition, so its accuracy still needs to be greatly improved. In this paper, a single-image human action recognition method based on improved ResNet and skeletal keypoints is proposed, and the accuracy is improved by several methods. We improved the backbone network ResNet-50 and CPN to a certain extent and constructed a multitask network to suit the human action recognition task, which not only improves the accuracy but also balances the total number of parameters and solves the problem of large network and slow operation. In this paper, the improvement methods of ResNet-50, CPN, and whole network are tested, respectively. The results show that the single-image human action recognition based on improved ResNet and skeletal keypoints can accurately identify human action in the case of different human movements, different background light, and occlusion. Compared with the original network and the main human action recognition algorithms, the accuracy of our method has its certain advantages.



2021 ◽  
Vol 13 (14) ◽  
pp. 2697
Author(s):  
Bo Liu ◽  
Qi Xiao ◽  
Yuhao Zhang ◽  
Wei Ni ◽  
Zhen Yang ◽  
...  

To address the problem of intelligent recognition of optical ship targets under low-altitude squint detection, we propose an intelligent recognition method based on simulation samples. This method comprehensively considers geometric and spectral characteristics of ship targets and ocean background and performs full link modeling combined with the squint detection atmospheric transmission model. It also generates and expands squint multi-angle imaging simulation samples of ship targets in the visible light band using the expanded sample type to perform feature analysis and modification on SqueezeNet. Shallow and deeper features are combined to improve the accuracy of feature recognition. The experimental results demonstrate that using simulation samples to expand the training set can improve the performance of the traditional k-nearest neighbors algorithm and modified SqueezeNet. For the classification of specific ship target types, a mixed-scene dataset expanded with simulation samples was used for training. The classification accuracy of the modified SqueezeNet was 91.85%. These results verify the effectiveness of the proposed method.



2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110381
Author(s):  
Xue Bai ◽  
Ze Liu ◽  
Jie Zhang ◽  
Shengye Wang ◽  
Qing Hou ◽  
...  

Fully convolutional networks were developed for predicting optimal dose distributions for patients with left-sided breast cancer and compared the prediction accuracy between two-dimensional and three-dimensional networks. Sixty cases treated with volumetric modulated arc radiotherapy were analyzed. Among them, 50 cases were randomly chosen to conform the training set, and the remaining 10 were to construct the test set. Two U-Net fully convolutional networks predicted the dose distributions, with two-dimensional and three-dimensional convolution kernels, respectively. Computed tomography images, delineated regions of interest, or their combination were considered as input data. The accuracy of predicted results was evaluated against the clinical dose. Most types of input data retrieved a similar dose to the ground truth for organs at risk ( p > 0.05). Overall, the two-dimensional model had higher performance than the three-dimensional model ( p < 0.05). Moreover, the two-dimensional region of interest input provided the best prediction results regarding the planning target volume mean percentage difference (2.40 ± 0.18%), heart mean percentage difference (4.28 ± 2.02%), and the gamma index at 80% of the prescription dose are with tolerances of 3 mm and 3% (0.85 ± 0.03), whereas the two-dimensional combined input provided the best prediction regarding ipsilateral lung mean percentage difference (4.16 ± 1.48%), lung mean percentage difference (2.41 ± 0.95%), spinal cord mean percentage difference (0.67 ± 0.40%), and 80% Dice similarity coefficient (0.94 ± 0.01). Statistically, the two-dimensional combined inputs achieved higher prediction accuracy regarding 80% Dice similarity coefficient than the two-dimensional region of interest input (0.94 ± 0.01 vs 0.92 ± 0.01, p < 0.05). The two-dimensional data model retrieves higher performance than its three-dimensional counterpart for dose prediction, especially when using region of interest and combined inputs.



2014 ◽  
Vol 602-605 ◽  
pp. 1610-1613
Author(s):  
Ming Hai Yao ◽  
Na Wang ◽  
Jin Song Li

With the increasing number of internet user, the authentication technology is more and more important. Iris recognition as an important method for identification, which has been attention by researchers. In order to improve the predictive accuracy of iris recognition algorithm, the iris recognition method is proposed based feature discrimination and category correlation. The feature discrimination and category correlation are calculated by laplacian score and mutual information. The formula about feature discrimination and category correlation are built. Aiming at texture characteristic of iris image, the multi-scale circular Gabor filter is used to feature extraction. The computational efficiency of algorithm is improved. In order to verify the validity of the algorithm, the CASIA iris database of Chinese Academy of Sciences is used to do the experiment. The experimental results show that our method has high predictive accuracy.



Sign in / Sign up

Export Citation Format

Share Document