scholarly journals A Wideband Reflector-Backed Antenna for Applications in GPR

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
A. Raza ◽  
W. Lin ◽  
M. K. Ishfaq ◽  
M. Inam ◽  
F. Masud ◽  
...  

A resistively loaded wideband slotted patch antenna with optimized performance on lower frequencies is proposed for ground-penetrating radar (GPR) applications. The proposed design is backed by an optimized reflector composed of a periodic array of square loop elements, which enhances the antenna’s gain and directivity. The antenna shows good radiation characteristics and ease of integration with the GPR systems. The proposed structure features a compact size and wide bandwidth covering from 0.6 to 4.6 GHz. The peak gain of 7 dBi is achieved. The fabricated prototype of the antenna along with an integrated optimized reflective surface has overall dimensions of 18 × 22 × 5 cm3. The measured results validate the antenna’s performance in both free space and sandy medium, which enlighten its use for GPR applications.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1930
Author(s):  
Di Shi ◽  
Taimur Aftab ◽  
Gunnar Gidion ◽  
Fatma Sayed ◽  
Leonhard M. Reindl

An electrically small patch antenna with a low-cost high-permittivity ceramic substrate material for use in a ground-penetrating radar is proposed in this work. The antenna is based on a commercial ceramic 915 MHz patch antenna with a size of 25 × 25 × 4 mm3 and a weight of 12.9 g. The influences of the main geometric parameters on the antenna’s electromagnetic characteristics were comprehensively studied. Three bandwidth improvement techniques were sequentially applied to optimize the antenna: tuning the key geometric parameters, adding cuts on the edges, and adding parasitic radiators. The designed antenna operates at around 1.3 GHz and has more than 40 MHz continuous −3 dB bandwidth. In comparison to the original antenna, the −3 and −6 dB fractional bandwidth is improved by 1.8 times and 4 times, respectively. Two antennas of the proposed design together with a customized radar were installed on an unmanned aerial vehicle (UAV) for a quick search for survivors after earthquakes or gas explosions without exposing the rescue staff to the uncertain dangers of moving on the debris.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2674
Author(s):  
Musa Hussain ◽  
Syed Muhammad Rizvi Jarchavi ◽  
Syeda Iffat Naqvi ◽  
Usama Gulzar ◽  
Salahuddin Khan ◽  
...  

In this paper, an umbrella-shaped patch antenna for future millimeter-wave applications for the 5G frequency band is presented. The proposed antenna resonates at multiple frequency bands, i.e., 28 GHz, 38 GHz, and 55 GHz (V-band) that have been globally allocated for 5G communications systems. The proposed antenna is designed using Rogers RT/duroid 5870, with a relative permittivity, loss tangent and thickness of 2.33 mm, 0.0012 mm and 0.79 mm, respectively. The antenna has an overall size of 8 mm × 8 mm which correspond to 0.7 λ × 0.7 λ, where λ is free space wavelength at the lowest resonance. Moreover, the wide bandwidth, high gain and tri band operational mode is achieved by introducing two stubs to the initial design. The antenna prototype was fabricated and validated experimentally. The comparison of the simulated and measured results demonstrates a good correlation. Additionally, the comparative analysis with state of the art work demonstrates that the proposed antenna offers compact size, simple geometrical configuration, wide bandwidth, high gain, and radiation efficiency which makes the proposed antenna a potential candidate for compact smart 5G devices.


A novel design of Ultra-Wideband (UWB) antenna with irregularly shaped hexagonal patch built on the elliptical-shaped FR-4 laminate with εr = 4.3 and tanδ = 0.025 is presented. The feed mechanism utilized in the structure proposed is modified co-planar waveguide (CPW), the feeding microstrip is tapered near the connecting edge of the patch for better impedance matching. The proposed antenna is compared with the traditional rectangular substrate and found that the elliptical substrate enhances the radiation characteristics of the antenna and is capable of functioning effectively in the range of 3.1 GHz-11.7 GHz, accompanied by the total efficiency > 86% across the whole FCC allocated UWB operating band. The antenna can be used for wide range of UWB applications as it exhibits good omnidirectional characteristics with a realized peak gain of 4.178dB and an average realized gain of 3.063dB. The simulation work of the antenna is accomplished using CST Studio (v. 2014).


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Srinivas Doddipalli ◽  
Ashwin Kothari ◽  
Paritosh Peshwe

A low profile pentagonal shaped monopole antenna is designed and presented for wearable applications. The main objective of this paper is to design a miniaturized ultrawide band monopole planar antenna which can work efficiently in free space but also on the surface of the human body. The impact of human tissues on antenna performance is explained using the proposed pentagonal monopole antenna. The antenna is designed with a pentagonal radiator and a matched feed line of 50 ohm and square slots are integrated on defected ground of FR4 substrate with a size of 15 mm × 25 mm to achieve ultrawide band (UWB) performance in free space and human proximity. This overall design will enhance the antenna performance with wide bandwidth ranging from 2.9 GHz to 11 GHz. Specific absorption rate (SAR) of the proposed antenna on dispersive phantom model is also measured to observe the exposure of electromagnetic energy on human tissues. The simulated and measured results of the proposed antenna exhibit wide bandwidth and radiation characteristics in both free space and human proximity.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1241-1254 ◽  
Author(s):  
J. van der Kruk ◽  
C. P. A. Wapenaar ◽  
J. T. Fokkema ◽  
P. M. van den Berg

Scalar imaging algorithms originally developed for the processing of remote sensing measurements (e.g., the synthetic‐aperture radar method) or seismic reflection data (e.g., the Gazdag phase‐shift method) are commonly used for the processing of ground‐penetrating radar (GPR) data. Unfortunately, these algorithms do not account for the radiation characteristics of GPR source and receiver antennas or the vectorial nature of radar waves. We present a new multicomponent imaging algorithm designed specifically for vector electromagnetic‐wave propagation. It accounts for all propagation effects, including the vectorial characteristics of the source and receiver antennas and the polarization of the electromagnetic wavefield. A constant‐offset source‐receiver antenna pair is assumed to overlie a dielectric medium. To assess the performance of the scalar and multicomponent imaging algorithms, we compute their spatial resolution function, which is defined as the image of a point scatterer at a fixed depth using a single frequency. Application of the new multicomponent imaging algorithm results in a circularly symmetric resolution function, demonstrating that the radiation characteristics of the source and receiver antennas do not influence the derived image. In contrast, the two tested scalar imaging algorithms return distinctly asymmetric resolution functions with incorrect phase characteristics, which could result in erroneous images of the subsurface when these algorithms are applied to GPR data. The multicomponent and two scalar imaging algorithms are tested on data acquired across numerous buried objects with various dielectric properties and different strike directions. Phase differences between the different images are similar to those observed in the synthetic examples. Of the tested algorithms, we conclude that the multicomponent approach produces the most reliable results.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


Sign in / Sign up

Export Citation Format

Share Document