scholarly journals Dynamic Response and Parametric Studies of Elliptical Blast-Resistant Door with the Combined Structure for Large Vacuum Explosion Containers

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Saiwei Cheng ◽  
Xiaojie Li ◽  
Yang Wang ◽  
Yuxin Wang ◽  
Honghao Yan

In recent years, with the improvement of environmental protection requirements year by year and the continuous expansion of explosive working scale, higher standards have been put forward for explosive working. It is hoped that the sphere of influence of the explosion can be limited to a minimal range. The explosion vessel is driven by such demand. As the explosion vessel’s key component, studying the blast-resistant door in depth is of great significance. This paper introduces a new elliptical blast-resistant door with the combined structure (EBD), mainly welded with an elliptical panel, arc support plate, and triangle support plate. The finite element program AUTODYN was used to calculate the explosion load, and LS-DYNA was used to calculate the blast-resistant door’s dynamic response. The calculation results show that the newly proposed EBD’s blast-resistance capacity is better than that of the traditional structure. To further study the factors that affect the dynamic response of the EBD, a parametric study was carried out on the EBD, mainly analyzing the influence of the vacuum degree in the explosion vessel, the number of explosives, and the diameter ratio of the EBD. The parametric calculation results show that reducing the vacuum degree in the explosion vessel and the number of explosives during explosion working can improve the blast-resistance capacity of the EBD. Based on the analysis of the dynamic response of four kinds of EBD with different diameter ratios under 0.2 atm explosion load, the optimal diameter ratio of the EBD is given.

2013 ◽  
Vol 631-632 ◽  
pp. 518-523 ◽  
Author(s):  
Xiang Li ◽  
Min You

Owing to the lack of a good theory method to obtain the accurate equivalent elastic constants of hexagon honeycomb sandwich structure’s core, the paper analyzed mechanics performance of honeycomb sandwich structure’s core and deduced equivalent elastic constants of hexagon honeycomb sandwich structure’s core considering the wall plate expansion deformation’s effect of hexagonal cell. And also a typical satellite sandwich structure was chose as an application to analyze. The commercial finite element program ANSYS was employed to evaluate the mechanics property of hexagon honeycomb core. Numerical simulation analysis and theoretical calculation results show the formulas of equivalent elastic constants is correct and also research results of the paper provide theory basis for satellite cellular sandwich structure optimization design.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


2012 ◽  
Vol 224 ◽  
pp. 381-384
Author(s):  
Wen Bin Liu ◽  
Shu Wang Yan ◽  
Wu Gang Wang ◽  
Miao Yu

The non-linear finite element program Ls-DYNA/ANSYS is applied to simulate numerically the capacity for the geo-materials to dissipate the energy induced by the falling objects. The calculation results for the crushed stone coincide well with those recommended by the current Code of《DNV-rp-f107_2010》, which is on the basis of experiment data, implying the feasibility of using this program to estimate the energy dissipating capacity of the geo-materials. Because little research has been performed with clay soil, the program Ls-DYNA/ANSYS is used to predict the energy dissipating capacity of clay layers.


2010 ◽  
Vol 450 ◽  
pp. 223-226 ◽  
Author(s):  
Shan Suo Zheng ◽  
Wei Wang ◽  
Bin Wang ◽  
Lei Li ◽  
Yi Hu

According to experiment of four steel reinforced high strength and high performance concrete(SRHSHPC) columns with different eccentricity, this paper establishes four equally parameter numerical models by finite element program ANSYS. The failure mechanism, failure mode and mechanical behaviors of the SRHSHPC columns with large and small eccentricity can be revealed by comparing the numerical simulation results with the corresponding experimental results. And the approximate plane-section assumption in SRHSHPC eccentric columns is verified by the study of the relationship between load and strain. It is shown that when constitutive models and failure criteria of SRHSHPC and steel are in precise case, the calculation results agree well with the corresponding experimental results.


2014 ◽  
Vol 644-650 ◽  
pp. 5133-5137
Author(s):  
Ching Yu Hsu ◽  
Cho Chung Liang ◽  
Tso Liang Teng ◽  
Chia Wei Chang

The pressure hull is the most important part of resisting pressure structures of the structural systems. The submerged pressure hull is subjected to very high hydrostatic pressure or underwater explosion load, which creates large compressive stress resultants. Due to this the pressure hull is susceptible to buckling. Buckling phenomena analysis is of greater importance in the design of the submerged pressure hulls. For the pressure hulls with local out-of-roundness, the operating depth will be greatly influenced and thus decreasing capability to resist pressure loading. Thus, this work employs the ABAQUS finite element program to analyze the effect of roundness on the buckling strength for the cylinder pressure hull. Sex kinds of out-of-roundness rateφ, 0%, 1%, 3%, 5%, 10% and 15%, were studied in this study. The bulking depth and collapse depth for the cylinder pressure hull with different out-of-roundness rate were calculated. The Analysis models and results of this study contribute to efforts to design pressure hull structures.


2011 ◽  
Vol 368-373 ◽  
pp. 542-548
Author(s):  
Chi Yan ◽  
Ri Song Qin ◽  
Hong Yue Sun

The fracture theory of soil was a new developing problem in recent year. In this paper, the basic principle of fracture mechanics and the strength theory of soil were combined, and the soil-cracking strength theory was adopted to build a constitutive relation for cracked soils. In order to use such theory and to analyze how the cracked soils effect on retaining structure, we developed an elastoplastic finite element program. Finally, the calculation results from this program were compared with the surveying measured in model testing.


2021 ◽  
Author(s):  
Ima T. Avval

The effect of three-dimensional geometry on the seismic response of open-top rectangular concrete water tanks is investigated. In this study, the fluid-structure interaction is introduced incorporating wall flexibility. Numerical studies are done based on finite element simulation of the tank-liquid system. The ANSYS finite element program is used. The liquid-tank system is modelled assuming both 2D and 3D geometries. Parametric studies are conducted to investigate the effect of water level, tank plan dimensions and the nature of the ground motion on the dynamic response. Due to three-dimensional geometry, amplification of the dynamic response in the form of sloshing height, hydrodynamic pressures and resultant forces is observed. The results show that, at the corner of the tanks, the interaction of the waves generated in longitudinal and transverse directions initiates greater wave amplitude. Sensitivity of the sloshing response of the tank to the frequency content of the ground motion is observed.


2013 ◽  
Vol 321-324 ◽  
pp. 234-238
Author(s):  
Li Jian

The experiment on joints of concrete filled thin-walled steel tube and the composite beam is carried out in 8 specimens, and mechanics performance of all type joints is concluded in general. The test results indicate that each joint has higher bearing capacity and better ductility performance. Solid65 and Shell181 Elements of ANSYS finite element program are adopted to simulate concrete and thin-walled steel sheet of composite beams and columns. Calculation results in theories proved conformity with the test in primary.


2021 ◽  
Author(s):  
Ima T. Avval

The effect of three-dimensional geometry on the seismic response of open-top rectangular concrete water tanks is investigated. In this study, the fluid-structure interaction is introduced incorporating wall flexibility. Numerical studies are done based on finite element simulation of the tank-liquid system. The ANSYS finite element program is used. The liquid-tank system is modelled assuming both 2D and 3D geometries. Parametric studies are conducted to investigate the effect of water level, tank plan dimensions and the nature of the ground motion on the dynamic response. Due to three-dimensional geometry, amplification of the dynamic response in the form of sloshing height, hydrodynamic pressures and resultant forces is observed. The results show that, at the corner of the tanks, the interaction of the waves generated in longitudinal and transverse directions initiates greater wave amplitude. Sensitivity of the sloshing response of the tank to the frequency content of the ground motion is observed.


2014 ◽  
Vol 578-579 ◽  
pp. 954-959
Author(s):  
Hua Jun Ma ◽  
Xin Chong Chen

Main bridge of Nanning Bridge is taken as Research Object. Using the finite element program ANSYS, space finite element model of an arch bridge with two inclined thin-walled steel box ribs is build, stability safety factor of the bridge is calculated, eigenvalue buckling analysis and non-linear buckling analysis of inclined thin-walled ribs are carried out, and stability performance is discussed. The result shows that stability problems of this bridge mainly occur on the ribs and are out-of-plane buckling in general, and horizontal loads have greater influences on out-of-plane buckling. The calculation results can provide parameters for construction, health detection and maintenance in the operational phase of the bridge.


Sign in / Sign up

Export Citation Format

Share Document