scholarly journals On Improving the Robustness of MEC with Big Data Analysis for Mobile Video Communication

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jianming Zhao ◽  
Peng Zeng ◽  
Yingjun Liu ◽  
Tianyu Wang

Mobile video communication and Internet of Things are playing a more and more important role in our daily life. Mobile Edge Computing (MEC), as the essential network architecture for the Internet, can significantly improve the quality of video streaming applications. The mobile devices transferring video flow are often exposed to hostile environment, where they would be damaged by different attackers. Accordingly, Mobile Edge Computing Network is often vulnerable under disruptions, against either natural disasters or human intentional attacks. Therefore, research on secure hub location in MEC, which could obviously enhance the robustness of the network, is highly invaluable. At present, most of the attacks encountered by edge nodes in MEC in the IoT are random attacks or random failures. According to network science, scale-free networks are more robust than the other types of network under the random failures. In this paper, an optimization algorithm is proposed to reorganize the structure of the network according to the amount of information transmitted between edge nodes. BA networks are more robust under random attacks, while WS networks behave better under human intentional attacks. Therefore, we change the structure of the network accordingly, when the attack type is different. Besides, in the MEC networks for mobile video communication, the capacity of each device and the size of the video data influence the structure significantly. The algorithm sufficiently takes the capability of edge nodes and the amount of the information between them into consideration. In robustness test, we set the number of network nodes to be 200 and 500 and increase the attack scale from 0% to 100% to observe the behaviours of the size of the giant component and the robustness calculated for each attack method. Evaluation results show that the proposed algorithm can significantly improve the robustness of the MEC networks and has good potential to be applied in real-world MEC systems.

Author(s):  
Ashish Singh ◽  
Kakali Chatterjee ◽  
Suresh Chandra Satapathy

AbstractThe Mobile Edge Computing (MEC) model attracts more users to its services due to its characteristics and rapid delivery approach. This network architecture capability enables users to access the information from the edge of the network. But, the security of this edge network architecture is a big challenge. All the MEC services are available in a shared manner and accessed by users via the Internet. Attacks like the user to root, remote login, Denial of Service (DoS), snooping, port scanning, etc., can be possible in this computing environment due to Internet-based remote service. Intrusion detection is an approach to protect the network by detecting attacks. Existing detection models can detect only the known attacks and the efficiency for monitoring the real-time network traffic is low. The existing intrusion detection solutions cannot identify new unknown attacks. Hence, there is a need of an Edge-based Hybrid Intrusion Detection Framework (EHIDF) that not only detects known attacks but also capable of detecting unknown attacks in real time with low False Alarm Rate (FAR). This paper aims to propose an EHIDF which is mainly considered the Machine Learning (ML) approach for detecting intrusive traffics in the MEC environment. The proposed framework consists of three intrusion detection modules with three different classifiers. The Signature Detection Module (SDM) uses a C4.5 classifier, Anomaly Detection Module (ADM) uses Naive-based classifier, and Hybrid Detection Module (HDM) uses the Meta-AdaboostM1 algorithm. The developed EHIDF can solve the present detection problems by detecting new unknown attacks with low FAR. The implementation results illustrate that EHIDF accuracy is 90.25% and FAR is 1.1%. These results are compared with previous works and found improved performance. The accuracy is improved up to 10.78% and FAR is reduced up to 93%. A game-theoretical approach is also discussed to analyze the security strength of the proposed framework.


Information ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 259 ◽  
Author(s):  
Jie Yuan ◽  
Erxia Li ◽  
Chaoqun Kang ◽  
Fangyuan Chang ◽  
Xiaoyong Li

Mobile edge computing (MEC) effectively integrates wireless network and Internet technologies and adds computing, storage, and processing functions to the edge of cellular networks. This new network architecture model can deliver services directly from the cloud to the very edge of the network while providing the best efficiency in mobile networks. However, due to the dynamic, open, and collaborative nature of MEC network environments, network security issues have become increasingly complex. Devices cannot easily ensure obtaining satisfactory and safe services because of the numerous, dynamic, and collaborative character of MEC devices and the lack of trust between devices. The trusted cooperative mechanism can help solve this problem. In this paper, we analyze the MEC network structure and device-to-device (D2D) trusted cooperative mechanism and their challenging issues and then discuss and compare different ways to establish the D2D trusted cooperative relationship in MEC, such as social trust, reputation, authentication techniques, and intrusion detection. All these ways focus on enhancing the efficiency, stability, and security of MEC services in presenting trustworthy services.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fanrong Kong ◽  
Hongxia Lu

Rural cooperative financial organization is a new type of cooperative financial organization in recent years. It is a community financial institution created by farmers and small rural enterprises to voluntarily invest in shares in order to meet the growing demand for rural financing. However, this financial organization has many flaws in the design of the system; it has not promoted the better development of rural mutual fund assistance. In addition, mobile edge computing (MEC) can be used as an effective supplement to mobile cloud computing and has been proposed. However, most of the current literature studies on cloud computing provide computing offload just to propose a network architecture, without modeling and solving to achieve. In this context, this paper focuses on the practical application of MEC in the risk control of new rural cooperative financial organizations. This paper proposes a collaborative LECC mechanism based on machine learning under the MEC architecture. The experimental simulation shows that the HR under the LECC mechanism is about 17%–23%, 46%–69%, and 93%–177% higher than that of LENC, LRU, and RR, respectively. It is unrealistic to want to rely on meager loan interest for long-term development. The most practical way is to increase the income level of the organization itself.


Author(s):  
Andrei Vladyko ◽  
Vasiliy Elagin ◽  
Anastasia Spirkina ◽  
Ammar Muthanna ◽  
Abdelhamied A. Ateya

As V2X technology develops, acute problems related to reliable and secure information exchange between network objects in real time appear. The article aims to solve the scientific problem of building a network architecture for reliable delivery of correct and uncompromised data within the V2X concept to improve the safety of road users, using blockchain technology and mobile edge computing (MEC). The authors present a formalized mathematical model of the system, taking into account the interconnection of objects and V2X information channels, and an energy-efficient algorithm of traffic offloading to the MEC server. The paper presents the results of application of blockchain technologies and mobile edge computing in the developed system, their description, evaluation of advantages and disadvantages of the implementation.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 96 ◽  
Author(s):  
Yongpeng Shi ◽  
Yujie Xia ◽  
Ya Gao

As an emerging network architecture and technology, mobile edge computing (MEC) can alleviate the tension between the computation-intensive applications and the resource-constrained mobile devices. However, most available studies on computation offloading in MEC assume that the edge severs host various applications and can cope with all kinds of computation tasks, ignoring limited computing resources and storage capacities of the MEC architecture. To make full use of the available resources deployed on the edge servers, in this paper, we study the cross-server computation offloading problem to realize the collaboration among multiple edge servers for multi-task mobile edge computing, and propose a greedy approximation algorithm as our solution to minimize the overall consumed energy. Numerical results validate that our proposed method can not only give near-optimal solutions with much higher computational efficiency, but also scale well with the growing number of mobile devices and tasks.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Lei He ◽  
Jianfeng Ma ◽  
Ruo Mo ◽  
Dawei Wei

Unmanned Aerial Vehicle (UAV) has enormous potential in many domains. According to the characteristics of UAV, it is important for UAV network to assure low latency and integrity and authentication of commands sent by command center or command stations to UAV. In this paper, we proposed a UAV network architecture based on mobile edge computing (MEC) which helps guarantee low latency in the UAV network. Afterwards, we proposed a designated verifier proxy blind signature (DVPBS) scheme for UAV network and proved that it is existentially unforgeable under an adaptive chosen message attack in the random oracle model. We compared the efficiency of our DVPBS scheme with other signature schemes by implementing them in jPBC and theoretically analyzing their signature length. The experiment results indicate that our DVPBS scheme is efficient. The signature length of our DVPBS is longer, but it is still short enough compared with the transmission capacity of UAV.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hui Luo ◽  
Quan Yin

Driven by the development of the Internet industry, mobile robots (MRs) technology has become increasingly mature and widely used in all walks of life. Since MRs are densely distributed in the network system, how to establish a reliable communication architecture to achieve good cooperation and resource sharing between MRs has become a research hotspot. In this respect, mobile edge computing (MEC) technology and millimeter wave (mmW) technology can provide powerful support. This paper proposes a mmW communication network architecture for distributed MRs in MEC environment. The mmW base station provides reliable communication services for MRs under the coverage of information cloud (IC). We design a joint resource and power allocation strategy aimed at minimizing network energy consumption. First, we use the Lyapunov optimization technique to transform the original infinite horizon Markov decision process (MDP) problem. Then, a semidistributed algorithm is introduced to solve the distributed optimization problem in the mmW network. By improving the autonomous decision-making ability of the mmW base station, the signaling overheads caused by information interaction are reduced, and information leakage is effectively avoided. Finally, the global optimal solution is obtained. Simulation results demonstrate the superiority of the proposed strategy.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Guanwen Li ◽  
Huachun Zhou ◽  
Bohao Feng ◽  
Guanglei Li ◽  
Taixin Li ◽  
...  

Mobile-Edge Computing (MEC) is a novel and sustainable network architecture that enables energy conservation with cloud computing and network services offloading at the edge of mobile cellular networks. However, how to efficiently manage various real-time changing security functions is an essential issue which hinders the future MEC development. To address this problem, we propose a fuzzy security service chaining approach for MEC. In particular, a new architecture is designed to decouple the required security functions with the physical resources. Based on this, we present a security proxy to support compatibility to traditional security functions. Furthermore, to find the optimal order of the required security functions, we establish a fuzzy inference system (FIS) based mechanism to achieve multiple optimal objectives. Much work has been done to implement a prototype, which is used to analyze the performance by comparing with a widely used method. The results prove that the proposed FIS mechanism achieves an improved performance in terms of Inverted Generational Distance (IGD) values and execution time with respect to the compared solution.


Sign in / Sign up

Export Citation Format

Share Document