scholarly journals NOVN: A named-object based virtual network architecture to support advanced mobile edge computing services

2020 ◽  
Vol 69 ◽  
pp. 101261 ◽  
Author(s):  
Francesco Bronzino ◽  
Sumit Maheshwari ◽  
Ivan Seskar ◽  
Dipankar Raychaudhuri
Author(s):  
Ashish Singh ◽  
Kakali Chatterjee ◽  
Suresh Chandra Satapathy

AbstractThe Mobile Edge Computing (MEC) model attracts more users to its services due to its characteristics and rapid delivery approach. This network architecture capability enables users to access the information from the edge of the network. But, the security of this edge network architecture is a big challenge. All the MEC services are available in a shared manner and accessed by users via the Internet. Attacks like the user to root, remote login, Denial of Service (DoS), snooping, port scanning, etc., can be possible in this computing environment due to Internet-based remote service. Intrusion detection is an approach to protect the network by detecting attacks. Existing detection models can detect only the known attacks and the efficiency for monitoring the real-time network traffic is low. The existing intrusion detection solutions cannot identify new unknown attacks. Hence, there is a need of an Edge-based Hybrid Intrusion Detection Framework (EHIDF) that not only detects known attacks but also capable of detecting unknown attacks in real time with low False Alarm Rate (FAR). This paper aims to propose an EHIDF which is mainly considered the Machine Learning (ML) approach for detecting intrusive traffics in the MEC environment. The proposed framework consists of three intrusion detection modules with three different classifiers. The Signature Detection Module (SDM) uses a C4.5 classifier, Anomaly Detection Module (ADM) uses Naive-based classifier, and Hybrid Detection Module (HDM) uses the Meta-AdaboostM1 algorithm. The developed EHIDF can solve the present detection problems by detecting new unknown attacks with low FAR. The implementation results illustrate that EHIDF accuracy is 90.25% and FAR is 1.1%. These results are compared with previous works and found improved performance. The accuracy is improved up to 10.78% and FAR is reduced up to 93%. A game-theoretical approach is also discussed to analyze the security strength of the proposed framework.


Information ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 259 ◽  
Author(s):  
Jie Yuan ◽  
Erxia Li ◽  
Chaoqun Kang ◽  
Fangyuan Chang ◽  
Xiaoyong Li

Mobile edge computing (MEC) effectively integrates wireless network and Internet technologies and adds computing, storage, and processing functions to the edge of cellular networks. This new network architecture model can deliver services directly from the cloud to the very edge of the network while providing the best efficiency in mobile networks. However, due to the dynamic, open, and collaborative nature of MEC network environments, network security issues have become increasingly complex. Devices cannot easily ensure obtaining satisfactory and safe services because of the numerous, dynamic, and collaborative character of MEC devices and the lack of trust between devices. The trusted cooperative mechanism can help solve this problem. In this paper, we analyze the MEC network structure and device-to-device (D2D) trusted cooperative mechanism and their challenging issues and then discuss and compare different ways to establish the D2D trusted cooperative relationship in MEC, such as social trust, reputation, authentication techniques, and intrusion detection. All these ways focus on enhancing the efficiency, stability, and security of MEC services in presenting trustworthy services.


Author(s):  
Zhi-Zhong Liu ◽  
Quan Z. Sheng ◽  
Xiaofei Xu ◽  
DianHui Chu ◽  
Wei Emma Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fanrong Kong ◽  
Hongxia Lu

Rural cooperative financial organization is a new type of cooperative financial organization in recent years. It is a community financial institution created by farmers and small rural enterprises to voluntarily invest in shares in order to meet the growing demand for rural financing. However, this financial organization has many flaws in the design of the system; it has not promoted the better development of rural mutual fund assistance. In addition, mobile edge computing (MEC) can be used as an effective supplement to mobile cloud computing and has been proposed. However, most of the current literature studies on cloud computing provide computing offload just to propose a network architecture, without modeling and solving to achieve. In this context, this paper focuses on the practical application of MEC in the risk control of new rural cooperative financial organizations. This paper proposes a collaborative LECC mechanism based on machine learning under the MEC architecture. The experimental simulation shows that the HR under the LECC mechanism is about 17%–23%, 46%–69%, and 93%–177% higher than that of LENC, LRU, and RR, respectively. It is unrealistic to want to rely on meager loan interest for long-term development. The most practical way is to increase the income level of the organization itself.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wenchen Zhou ◽  
Weiwei Fang ◽  
Yangyang Li ◽  
Bo Yuan ◽  
Yiming Li ◽  
...  

Mobile edge computing (MEC) provides cloud-computing services for mobile devices to offload intensive computation tasks to the physically proximal MEC servers. In this paper, we consider a multiserver system where a single mobile device asks for computation offloading to multiple nearby servers. We formulate this offloading problem as the joint optimization of computation task assignment and CPU frequency scaling, in order to minimize a tradeoff between task execution time and mobile energy consumption. The resulting optimization problem is combinatorial in essence, and the optimal solution generally can only be obtained by exhaustive search with extremely high complexity. Leveraging the Markov approximation technique, we propose a light-weight algorithm that can provably converge to a bounded near-optimal solution. The simulation results show that the proposed algorithm is able to generate near-optimal solutions and outperform other benchmark algorithms.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Bego Blanco ◽  
Ianire Taboada ◽  
Jose Oscar Fajardo ◽  
Fidel Liberal

In the context of cloud-enabled 5G radio access networks with network function virtualization capabilities, we focus on the virtual network function placement problem for a multitenant cluster of small cells that provide mobile edge computing services. Under an emerging distributed network architecture and hardware infrastructure, we employ cloud-enabled small cells that integrate microservers for virtualization execution, equipped with additional hardware appliances. We develop an energy-aware placement solution using a robust optimization approach based on service demand uncertainty in order to minimize the power consumption in the system constrained by network service latency requirements and infrastructure terms. Then, we discuss the results of the proposed placement mechanism in 5G scenarios that combine several service flavours and robust protection values. Once the impact of the service flavour and robust protection on the global power consumption of the system is analyzed, numerical results indicate that our proposal succeeds in efficiently placing the virtual network functions that compose the network services in the available hardware infrastructure while fulfilling service constraints.


Author(s):  
Andrei Vladyko ◽  
Vasiliy Elagin ◽  
Anastasia Spirkina ◽  
Ammar Muthanna ◽  
Abdelhamied A. Ateya

As V2X technology develops, acute problems related to reliable and secure information exchange between network objects in real time appear. The article aims to solve the scientific problem of building a network architecture for reliable delivery of correct and uncompromised data within the V2X concept to improve the safety of road users, using blockchain technology and mobile edge computing (MEC). The authors present a formalized mathematical model of the system, taking into account the interconnection of objects and V2X information channels, and an energy-efficient algorithm of traffic offloading to the MEC server. The paper presents the results of application of blockchain technologies and mobile edge computing in the developed system, their description, evaluation of advantages and disadvantages of the implementation.


Sign in / Sign up

Export Citation Format

Share Document