scholarly journals The Family of Multiparameter Quaternary Subdivision Schemes

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ghulam Mustafa ◽  
Muhammad Asghar ◽  
Shafqat Ali ◽  
Arzoo Qamar ◽  
Jia-Bao Liu

In the field of subdivision, the smoothness increases as the arity of schemes increases. The family of high arity schemes gives high smoothness comparative to low arity schemes. In this paper, we propose a simple and generalized formula for a family of multiparameter quaternary subdivision schemes. The conditions for convergence of subdivision schemes are also presented. Moreover, we derive subdivision schemes after substituting the different values of parameters. We also analyzed the important properties of the proposed family of subdivision schemes. After comparison with existing schemes, we analyze that the proposed family of subdivision schemes gives better smoothness and approximation compared with the existing subdivision schemes.


2018 ◽  
Vol 16 (1) ◽  
pp. 1501-1518 ◽  
Author(s):  
Ghulam Mustafa ◽  
Robina Bashir

AbstractThis article deals with univariate binary approximating subdivision schemes and their generalization to non-tensor product bivariate subdivision schemes. The two algorithms are presented with one tension and two integer parameters which generate families of univariate and bivariate schemes. The tension parameter controls the shape of the limit curve and surface while integer parameters identify the members of the family. It is demonstrated that the proposed schemes preserve monotonicity of initial data. Moreover, continuity, polynomial reproduction and generation of the schemes are also discussed. Comparison with existing schemes is also given.



2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Rabia Hameed ◽  
Ghulam Mustafa ◽  
Jiansong Deng ◽  
Shafqat Ali

In this article, we present a new method to construct a family of 2 N + 2 -point binary subdivision schemes with one tension parameter. The construction of the family of schemes is based on repeated local translation of points by certain displacement vectors. Therefore, refinement rules of the 2 N + 2 -point schemes are recursively obtained from refinement rules of the 2 N -point schemes. Thus, we get a new subdivision scheme at each iteration. Moreover, the complexity, polynomial reproduction, and polynomial generation of the schemes are increased by two at each iteration. Furthermore, a family of interproximate subdivision schemes with tension parameters is also introduced which is the extended form of the proposed family of schemes. This family of schemes allows a different tension value for each edge and vertex of the initial control polygon. These schemes generate curves and surfaces such that some initial control points are interpolated and others are approximated.



2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Abdul Ghaffar ◽  
Ghulam Mustafa

We presented a general formula to generate the family of even-point ternary approximating subdivision schemes with a shape parameter for describing curves. Some sufficient conditions for C0 to C7 continuity and approximation order for certain ranges of parameter are discussed. The proposed even-point ternary schemes compare remarkably with existing even-point ternary schemes because they are able to generate limit functions with higher smoothness and approximation order. In addition, we measured curvature and torsion that assist the quality of subdivided curves.



Author(s):  
Muhammad Asghar ◽  
Muhammad Javed Iqbal ◽  
Ghulam Mustafa

Subdivision schemes are famous for the generation of smooth curves and surfaces in CAGD (Computer Aided Geometric Design). The continuity is an important property of subdivision schemes. Subdivision schemes having high continuity are always required for geometric modeling. Probability distribution is the branch of statistics which is used to find the probability of an event. We use probability distribution in the field of subdivision schemes. In this paper, a simplest way is introduced to increase the continuity of subdivision schemes. A family of binary approximating subdivision schemes with probability parameter p is constructed by using binomial probability generating function. We have derived some family members and analyzed the important properties such as continuity, Holder regularity, degree of generation, degree of reproduction and limit stencils. It is observed that, when the probability parameter p = 1/2, the family of subdivision schemes have maximum continuity, generation degree and Holder regularity. Comparison shows that our proposed family has high continuity as compare to the existing subdivision schemes. The proposed family also preserves the shape preserving property such as convexity preservation. Subdivision schemes give negatively skewed, normal and positively skewed behavior on convex data due to the probability parameter. Visual performances of the family are also presented.



2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Asghar ◽  
Ghulam Mustafa

The generalized symbols of the family of a-ary (a≥2) univariate stationary and nonstationary parametric subdivision schemes have been presented. These schemes are the new version of Lane-Riesenfeld algorithms. Comparison shows that our proposed family has higher continuity and generation degree comparative to the existing subdivision schemes. It is observed that many existing binary and ternary schemes are the special cases of our schemes. The analysis of proposed family of subdivision schemes is also presented in this paper.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Pakeeza Ashraf ◽  
Ghulam Mustafa ◽  
Jiansong Deng

We apply six-point variant on the Lane-Riesenfeld algorithm to obtain a new family of subdivision schemes. We also determine the support, smoothness, Hölder regularity, magnitude of the artifact, and the shrinkage effect due to the change of integer smoothing parameter that characterizes the members of the family. The degree of polynomial reproduction also has been discussed. It is observed that the proposed schemes have less shrinkage effect and as a result better preserve the shape of control polygon.



2021 ◽  
Vol 47 (2) ◽  
Author(s):  
M. Charina ◽  
C. Conti ◽  
T. Mejstrik ◽  
J.-L. Merrien

AbstractIn this paper we construct a family of ternary interpolatory Hermite subdivision schemes of order 1 with small support and ${\mathscr{H}}\mathcal {C}^{2}$ H C 2 -smoothness. Indeed, leaving the binary domain, it is possible to derive interpolatory Hermite subdivision schemes with higher regularity than the existing binary examples. The family of schemes we construct is a two-parameter family whose ${\mathscr{H}}\mathcal {C}^{2}$ H C 2 -smoothness is guaranteed whenever the parameters are chosen from a certain polygonal region. The construction of this new family is inspired by the geometric insight into the ternary interpolatory scalar three-point subdivision scheme by Hassan and Dodgson. The smoothness of our new family of Hermite schemes is proven by means of joint spectral radius techniques.



1988 ◽  
Vol 62 (03) ◽  
pp. 419-423 ◽  
Author(s):  
Baba Senowbari-Daryan ◽  
George D. Stanley

Two Upper Triassic sphinctozoan sponges of the family Sebargasiidae were recovered from silicified residues collected in Hells Canyon, Oregon. These sponges areAmblysiphonellacf.A. steinmanni(Haas), known from the Tethys region, andColospongia whalenin. sp., an endemic species. The latter sponge was placed in the superfamily Porata by Seilacher (1962). The presence of well-preserved cribrate plates in this sponge, in addition to pores of the chamber walls, is a unique condition never before reported in any porate sphinctozoans. Aporate counterparts known primarily from the Triassic Alps have similar cribrate plates but lack the pores in the chamber walls. The sponges from Hells Canyon are associated with abundant bivalves and corals of marked Tethyan affinities and come from a displaced terrane known as the Wallowa Terrane. It was a tropical island arc, suspected to have paleogeographic relationships with Wrangellia; however, these sponges have not yet been found in any other Cordilleran terrane.



Sign in / Sign up

Export Citation Format

Share Document