scholarly journals Physical Attributes of Bardeen Stellar Structures in f R Gravity

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
M. Farasat Shamir ◽  
Ammara Usman ◽  
Tayyaba Naz

The main aim of our study is to explore some relativistic configurations of compact object solution in the background of f R gravity, by adopting the Krori-Barua spacetime. In this regard, we establish the field equations for spherically symmetric spacetime along with charged anisotropic matter source by assuming the specific form of the metric potentials, i.e., ν r = B r 2 + C and λ r = A r 2 . Further, to calculate the constant values, we consider the Bardeen model as an exterior spacetime at the surface boundary. To ensure the viability of the f R gravity model, the physical characteristics including energy density, pressure components, energy bonds, equilibrium condition, Herrera cracking concept, mass-radius relation, and adiabatic index are analyzed in detail. It is observed that all the outcomes by graphical exploration and tabular figures show that the Bardeen black hole model describes the physically realistic stellar structures.

2021 ◽  
Vol 81 (6) ◽  
Author(s):  
G. G. L. Nashed ◽  
S. D. Odintsov ◽  
V. K. Oikonomou

AbstractIn this paper we shall consider spherically symmetric spacetime solutions describing the interior of stellar compact objects, in the context of higher-order curvature theory of the $${{\mathrm {f(R)}}}$$ f ( R ) type. We shall derive the non-vacuum field equations of the higher-order curvature theory, without assuming any specific form of the $${{\mathrm {f(R)}}}$$ f ( R ) theory, specifying the analysis for a spherically symmetric spacetime with two unknown functions. We obtain a system of highly non-linear differential equations, which consists of four differential equations with six unknown functions. To solve such a system, we assume a specific form of metric potentials, using the Krori–Barua ansatz. We successfully solve the system of differential equations, and we derive all the components of the energy–momentum tensor. Moreover, we derive the non-trivial general form of $${{\mathrm {f(R)}}}$$ f ( R ) that may generate such solutions and calculate the dynamic Ricci scalar of the anisotropic star. Accordingly, we calculate the asymptotic form of the function $${\mathrm {f(R)}}$$ f ( R ) , which is a polynomial function. We match the derived interior solution with the exterior one, which was derived in [1], with the latter also resulting to a non-trivial form of the Ricci scalar. Notably but rather expected, the exterior solution differs from the Schwarzschild one in the context of general relativity. The matching procedure will eventually relate two constants with the mass and radius of the compact stellar object. We list the necessary conditions that any compact anisotropic star must satisfy and explain in detail that our model bypasses all of these conditions for a special compact star $$\textit{Her X--1}$$ Her X - - 1 , which has an estimated mass and radius $$(mass = 0.85 \pm 0.15M_{\circledcirc }\ and\ radius = 8.1 \pm 0.41~\text {km}$$ ( m a s s = 0.85 ± 0.15 M ⊚ a n d r a d i u s = 8.1 ± 0.41 km ). Moreover, we study the stability of this model by using the Tolman–Oppenheimer–Volkoff equation and adiabatic index, and we show that the considered model is different and more stable compared to the corresponding models in the context of general relativity.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Bruno J. Barros ◽  
Bogdan Dǎnilǎ ◽  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Abstract We investigate static and spherically symmetric solutions in a gravity theory that extends the standard Hilbert–Einstein action with a Lagrangian constructed from a three-form field $$A_{\alpha \beta \gamma }$$Aαβγ, which is related to the field strength and a potential term. The field equations are obtained explicitly for a static and spherically symmetric geometry in vacuum. For a vanishing three-form field potential the gravitational field equations can be solved exactly. For arbitrary potentials numerical approaches are adopted in studying the behavior of the metric functions and of the three-form field. To this effect, the field equations are reformulated in a dimensionless form and are solved numerically by introducing a suitable independent radial coordinate. We detect the formation of a black hole from the presence of a Killing horizon for the timelike Killing vector in the metric tensor components. Several models, corresponding to different functional forms of the three-field potential, namely, the Higgs and exponential type, are considered. In particular, naked singularity solutions are also obtained for the exponential potential case. Finally, the thermodynamic properties of these black hole solutions, such as the horizon temperature, specific heat, entropy and evaporation time due to the Hawking luminosity, are studied in detail.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950051
Author(s):  
M. Sharif ◽  
Sobia Sadiq

The purpose of this paper is to construct spherically symmetric models for anisotropic matter configurations by imposing conformally flat conditions. This work is done for a relatively moving observer with matter using two types of polytropic equations of state. We evaluate the corresponding conservation equation, mass equation as well as energy constraints for both choices of equations of state. The conformal flatness is employed to find a specific form of anisotropy which aids study to spherical polytropic configurations. It is found that the first model satisfies all the energy conditions while the second model does not meet the dominant energy bound. It is also found that both models remain stable throughout the evolution.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Miao He ◽  
Ziliang Wang ◽  
Chao Fang ◽  
Daoquan Sun ◽  
Jianbo Deng

Einstein’s equation could be interpreted as the first law of thermodynamics near the spherically symmetric horizon. Through recalling the Einstein gravity with a more general static spherical symmetric metric, we find that the entropy would have a correction in Einstein gravity. By using this method, we investigate the Eddington-inspired Born-Infeld (EiBI) gravity. Without matter field, we can also derive the first law in EiBI gravity. With an electromagnetic field, as the field equations have a more general spherically symmetric solution in EiBI gravity, we find that correction of the entropy could be generalized to EiBI gravity. Furthermore, we point out that the Einstein gravity and EiBI gravity might be equivalent on the event horizon. At last, under EiBI gravity with the electromagnetic field, a specific corrected entropy of black hole is given.


2015 ◽  
Vol 93 (11) ◽  
pp. 1420-1426 ◽  
Author(s):  
M. Sharif ◽  
Sobia Sadiq

In this paper, we study the effects of electromagnetic field on conformally flat spherically symmetric anisotropic matter distribution satisfying two polytropic equations of state. We consider conformally flat condition and evaluate corresponding anisotropy, which is used to study polytropes for the charged compact object. Finally, we study stability of the resulting models using the Tolman mass. It is concluded that only one of the resulting models is physically viable.


2014 ◽  
Vol 29 (19) ◽  
pp. 1430018 ◽  
Author(s):  
F. R. Klinkhamer

Certain exact solutions of the Einstein field equations over nonsimply-connected manifolds are reviewed. These solutions are spherically symmetric and have no curvature singularity. They provide a regularization of the standard Schwarzschild solution with a curvature singularity at the center. Spherically symmetric collapse of matter in ℝ4 may result in these nonsingular black-hole solutions, if quantum-gravity effects allow for topology change near the center or if nontrivial topology is already present as a remnant from a quantum spacetime foam.


1999 ◽  
Vol 14 (28) ◽  
pp. 1951-1960 ◽  
Author(s):  
ZHONG-HENG LI

We study both spherically symmetric and rotating (Kerr) nonstationary black holes and discuss the radiation of these black holes via the Hawking process. We find that the thermal radiation spectrum of a nonstationary black hole is obviously dependent on the spin state of a particle and is different from the case of a stationary black hole. This effect originates from the quantum ergosphere. We also find that the field equations of spin s=0,1/2,1 and 2 can combine into a generalized Teukolsky-type master equation with sources for any spherically symmetric black hole.


2013 ◽  
Vol 28 (30) ◽  
pp. 1350136 ◽  
Author(s):  
F. R. KLINKHAMER

An exact solution of the vacuum Einstein field equations over a nonsimply-connected manifold is presented. This solution is spherically symmetric and has no curvature singularity. It can be considered as a regularization of the Schwarzschild solution over a simply-connected manifold, which has a curvature singularity at the center. Spherically symmetric collapse of matter in ℝ4 may result in this nonsingular black-hole solution, if quantum-gravity effects allow for topology change near the center.


1998 ◽  
Vol 13 (08) ◽  
pp. 1305-1328 ◽  
Author(s):  
NOBUYOSHI OHTA ◽  
TAKASHI SHIMIZU

We investigate the possibility of extending nonextreme black hole solutions made of intersecting M-branes to those with two nonextreme deformation parameters, similar to Reissner–Nordstrøm solutions. General analysis of possible solutions is carried out to reduce the problem of solving field equations to a simple algebraic one for static spherically-symmetric case in D dimensions. The results are used to show that the extension to two-parameter solutions is possible for D= 4,5 dimensions but not for higher dimensions, and that the area of horizon always vanishes in the extreme limit for black hole solutions for D≥6 except for two very special cases which are identified. Various solutions are also summarized.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850065 ◽  
Author(s):  
Suhail Khan ◽  
Muhammad Shoaib Khan ◽  
Amjad Ali

In this paper, our aim is to study (n + 2)-dimensional collapse of perfect fluid spherically symmetric spacetime in the context of f(R, T) gravity. The matching conditions are acquired by considering a spherically symmetric non-static (n + 2)-dimensional metric in the inner region and Schwarzschild (n + 2)-dimensional metric in the outer region of the star. To solve the field equations for above settings in f(R, T) gravity, we choose the stress–energy tensor trace and the Ricci scalar as constants. It is observed that two physical horizons, namely, cosmological and black hole horizons appear as a consequence of this collapse. A singularity is also formed after the birth of both the horizons. It is also observed that the term f(R0, T0) slows down the collapsing process.


Sign in / Sign up

Export Citation Format

Share Document