scholarly journals Field and Numerical Investigation on the Coal Pillar Instability of Gob-Side Entry in Gently Inclined Coal Seam

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xupeng Ta ◽  
Zhijun Wan ◽  
Yuan Zhang ◽  
Peng Shi ◽  
Zejie Wei ◽  
...  

In order to study the coal pillar stability of gob-side entry in gently inclined coal seam, a comprehensive method including theoretical analysis, numerical modeling, and field monitoring was applied to study its fracturing and instability mechanism. The results show that the uneven horizontal stress was the internal cause of entry asymmetric deformation and failure in inclined coal seam. In gently inclined coal seam, the rotation movement of the main roof and stress distribution were closely related to inclination of the coal seam. Based on the asymmetric deformation characteristics and mechanisms of entry, a collaborative control technology of roof cutting for pressure relief and support strengthening has been put forward. The research results have practical significance for revealing the mechanism of entry damage in gently inclined coal seam mining and proposing engineering measures to prevent coal pillar damage and disaster occurrence.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shengrong Xie ◽  
Xiaoyu Wu ◽  
Dongdong Chen ◽  
Yaohui Sun ◽  
Junchao Zeng ◽  
...  

Automatic roadways on gob-side entry retaining with no-pillars are used for longwall mining technology. The mining technology with no-pillars can recover coal pillar resources and reduce the amount and cost of roadway excavations. Automatic roadway technology for cutting roofs by combined support on gob-side entry retaining with no-pillars is adopted for the condition of thick immediate roof and medium-thick coal seam mining, cutting off the immediate roof and the main roof on the gob by combined support. The fractured roof forms gangue blocks to fill the gob and loads the overlying strata. The gangue control system is placed on the roadside, which controls the caving gangue to form a gangue rib. In this paper, the viewpoints and key technologies (the roof-cutting technology, the reinforcement and support technology, the gangue rib control technology, and the auxiliary support technology) of automatic roadway technology for cutting roofs by combined support on the gob-side entry retaining with no-pillars are introduced. Furthermore, the formation and control process are explained. The numerical simulation is used to simulate and analyze the roof hanging and the roof cutting structures. In addition, a field engineering test is performed. The field test shows that automatic roadway technology for cutting roofs by combined support on gob-side entry retaining with no-pillars is feasible. This process uses construction techniques and technologies to meet on-site production needs. The combined support has high resistance strength and is shrinkable. In engineering applications, the combined support has a low damage rate. The deformation of the automatic roadway with gob-side entry retaining is small, and the control effect is significant.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Dongdong Chen ◽  
En Wang ◽  
Shengrong Xie ◽  
Fulian He ◽  
Long Wang ◽  
...  

Multi-coal-seam mining creates surrounding rock control difficulties, because the mining of a coal face in one seam can affect coal faces in another. We examine the effects of multi-coal-seam mining on the evolution of the deviatoric stress distribution and plastic zone in the roadway surrounding rock. In particular, we use numerical simulation, theoretical calculation, drilling detection, and mine pressure observation to study the distribution and evolution characteristics of deviatoric stress on Tailgate 8709 in No. 11 coal seam in Jinhuagong mine when the N8707 and N8709 coal faces in No. 7-4 coal seam and the N8707 and N8709 coal faces in No. 11 coal seam are mined. The evolution laws of deviatoric stress and the plastic zone of roadway surrounding rock in the advance and behind sections of the coal face are studied, and a corresponding control technology is proposed. The results show that the peak value of deviatoric stress increases with the advance of the coal face, and the positions of the peak value of deviatoric stress and the plastic zone become deeper. The deflection angle of the peak stress after mining at each coal face and the characteristics of the peak zone of deviatoric stress and the plastic zone of the roadway surrounding rock under the disturbance of multi-coal-seam mining are determined. In conclusion, the damage range in the roadway roof in the solid-coal side and coal pillar is large and must be controlled. A combined support technology based on high-strength and high pretension anchor cables and truss anchor cables is proposed; long anchor cables are used to strengthen the support of the roadway roof in the solid-coal side and coal pillar. The accuracy of the calculated plastic zone range and the reliability of the combined support technology are verified through drilling detection and mine pressure observation on site. This research can provide a point of reference for roadway surrounding rock control under similar conditions.


2019 ◽  
Vol 23 (4) ◽  
pp. 2315-2322
Author(s):  
Xinxian Zhai ◽  
Yanwei Zhai ◽  
Xingzi Tu ◽  
Rubo Li ◽  
Guangshuai Huang

Ground surface in Yonglong coal mine is hilly terrain. There is a Yinshigou reservoir on minefield. Deep coal seam mining under the reservoir has an influence on the deformation of oversize normal fault, and can cause severe mine water-inrush. Using numerical simulation software UDEC, the paper studied the characteristics of plastic zone and stress field in front of coal face in the hanging wall of the fault, while the coal face advance distances from setting-up room to coal face line were different. The results showed that while the distance from coal face to the fault i. e. the width of fault-protected pillar, was 80 m, the front abutment pressure had less influence on two sides rock mass of the fault, the fault reduced the vertical stress of its surrounding rocks; The surrounding rocks in the vicinity of fault were in a same vertical displacement contour, whose displacement was very smaller. Reasonable fault-protected pillar width of the numerical study was much closer to the average water-proof coal pillar width based on coal mines water prevention regulations of China. Consequently, while the width of fault-protected pillar is more than 80 m, coal seam mining in hanging wall of fault has no influence on the fault, and coal seam safely mining under the reservoir could be carried out.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ming Zhang ◽  
Chen Cao ◽  
Bingjie Huo

The condition of the coal pillars remained in the room-and-pillar gobs is complicated. The stresses loaded on the pillar floor may be transmitted and overlapped. It changes the stress environment of the lower coal seam roof, leading abnormal periodic weighting. In the procedure of coal seam 3−1 mining in the Huoluowan Coal Mine, the ground stress is high while the working face passing through the room pillars of overlying coal seam 2−2, leading to hydraulic shield being broken. In this paper, theoretical analysis, numerical calculation, and similar material simulation were used to analyse the stress environment of lower seam and the effect of coal pillars remained in close-distanced upper seam. The stress transfer model was established for the room pillars of coal seam 2−2, and the stress distribution of underlying strata was obtained based on theoretical analysis. The joint action of dynamic pressure of high stress-coal pillar with movement of overlying rock strata in the working face 3−1 under the coal pillar was revealed. The results showed that the horizontal stress and vertical stress under the large coal pillar of the room gob in coal seam 2−2 were high, being from 9.7 to 15.3 MPa. The influencing depth of vertical stress ranged from 42 m to 58 m. The influencing depth of horizontal stress ranged from 10 to 23 m. The influencing range of the shear stress was from 25 to 50 m. When the working face 3−1 was mined below the coal pillar of 20 m or 50 m, abutment pressure was relatively high. The stress concentration coefficient reached 4.44–5.00. The dynamic pressure of the working face was induced by the stress overlying of the upper and lower coal seams, instability of the inverted trapezoid rock pillar above the coal pillar, and collapsing movement of the roof. The studying results were beneficial for guiding the safety mining of the coal seam 3−1 in the Huoluowan Coal Mine.


2012 ◽  
Vol 616-618 ◽  
pp. 402-405 ◽  
Author(s):  
Hong Chun Xia ◽  
Guo Sheng Gao ◽  
Bin Yu

According to the specific geological conditions in themulti-layer worked-out areas of Yongding coal seam, by the methods of integration of theoretic analysis, numerical value calculation and so on, we studied movement law of Overlaying Strata and influence of coal pillar in Coal seam mining, obtained the basic law of the overlying strata movement in multiplayer, provides a theoretical basis for the safe and efficient exploitation of the success of multiplayer. Many mining area in China is mining of closed distance coal seam group, By the impact of coal seam in the overlying, face and the tunnel roof structure will be different injury in sub-coal seam mining, Roof structure has changed greatly, even damage and easily take the roof leakage, When the the goaf communication with the overlying coal seams, caused by the induced secondary disasters such as face air leakage, Therefore, exploitation of the law of motion of the overlying strata in the multiplayer is a pressing problem. Exploitation multiplayer seam few theoretical and technical foundation at home and abroad, affecting the validity of the mining, rationality. although a lot of research on theory and technology of coal mining over the years[1~5], But it was not able to an overall comprehensive analysis of upper goaf adjacent goaf and overlying the coal pillar and present mining face, create a dynamic structural mechanics model, which is likely to cause the occurrence of disasters.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yongkang Yang ◽  
Yanrong Ma ◽  
Chunxu Ji ◽  
Tianhe Kang ◽  
Xingyun Guo

Because the coal seam is particularly thick and the mining intensity is large, the mining of extremely thick coal seams often causes a wide range of disturbed fractures, which in turn induces the phenomenon of strong underground pressure such as induced support crushing and water inrush. Through theoretical analysis, laboratory similarity simulation test, and other methods, this paper studies the effect of mining thickness on overburden movement and underground pressure characteristics for extremely thick coal seams by sublevel caving with high bottom cutting height. Some conclusions can be drawn as follows: (i) under the “beam-hinged cantilever beam rocks” structure theory, the rock pillar thickness which needs to be controlled increases linearly as a function of mining thickness is achieved, and the reason of increased of support resistance in full-mechanized caving mining in extremely thick seams is explained in the theory; (ii) based on the results of the theoretical analysis and the lab simulation tests, the law of the abutment pressure peak is inverse to the full-seam mining thickness, and the distance between abutment peak and working face is proportional to the full-seam mining thickness, that is to say that the damage range of overlying strata increased; (iii) there are three working states of loading support in extrathick coal seams, such as normal circumstance, lower main roof pressure, and higher main roof pressure, meanwhile these states keep changing; (iv) under the guarantee of stope safety conditions, due to lower support strength, it will benefit the special thick seam top-coal caving under normal circumstance; (v) increasing the supporting strength can balance the impact loading under the lower main roof pressure, guaranteeing valid support for roof strata; (vi) by releasing high pressure, due to lower production, lower recovery rate of coal and other measures guarantee the stability of the stope support in the case of the higher main roof pressure.


2008 ◽  
Vol 33-37 ◽  
pp. 1123-1128 ◽  
Author(s):  
Wei Gao

Because it is very important to study the coal pillar stability, a lot of methods to do this have been proposed. But most of those methods do not consider the nature of coal material and only study the coal pillar that is level. To solve this problem suitably, here a new method is proposed. In this method, the plastic softening nature of coal material is considered. And also, the coal seam pitch is considered in our analysis. Based on real deformation of coal pillar and the previous study, the limiting equilibrium method is applied. At last, the rationality of our method is verified through a strip mining engineering example. And the results show that, the computing results of our method are coincided with measuring results very well and our method can be applied in real engineering practice very well.


2019 ◽  
Vol 6 (4) ◽  
pp. 536-546 ◽  
Author(s):  
Bonan Wang ◽  
Faning Dang ◽  
Wei Chao ◽  
Yanping Miao ◽  
Jun Li ◽  
...  

Abstract Two case studies were conducted in the Shennan mining area of Shaanxi Province, China to evaluate the surrounding rock deformation and stress evolution in pre-driven longwall recovery rooms. These studies mainly monitored the surrounding rock deformation and coal pillar stress in the recovery rooms of the N1206 panel of 2−2 coal seam at Ningtiaota Coal Mine and the 15205 panel of 5−2 coal seam at Hongliulin Coal Mine. The monitoring results showed that the surrounding rock deformation of the main recovery room and the coal pillar stress in the N1206 and 15205 panels began to increase significantly when the face was 36 m and 42 m away from the terminal line, respectively. After the face entered the main recovery room, the maximum roof-to-floor convergence in the N1206 and 15205 panels was 348.03 mm and 771.24 mm, respectively, and the coal pillar stresses increased more than 5 MPa and 7 MPa, respectively. In addition, analysis of the periodic weighting data showed that the main roof break position of the N1206 and 15205 panels after the longwall face entered the main recovery room was − 3.8 m and − 8.2 m, respectively. This research shows that when the main roof breaks above the coal pillar, the surrounding rock deformation of the main recovery room and the coal pillar stress increase sharply. The last weighting is the key factor affecting the stability of the main recovery room and the coal pillar; main roof breaks at disadvantageous positions are the main cause of the support crushing accidents.


Sign in / Sign up

Export Citation Format

Share Document