scholarly journals Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lili Zhang ◽  
Jinjin Chu ◽  
Wenhao Hao ◽  
Jiaojiao Zhang ◽  
Haibo Li ◽  
...  

Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology, including type 2 diabetes mellitus (T2DM). Metabolites and bacterial components of gut microbiota affect the initiation and progression of T2DM by regulating inflammation, immunity, and metabolism. Short-chain fatty acids, secondary bile acid, imidazole propionate, branched-chain amino acids, and lipopolysaccharide are the main molecules related to T2DM. Many studies have investigated the role of gut microbiota in T2DM, particularly those butyrate-producing bacteria. Increasing evidence has demonstrated that fecal microbiota transplantation and probiotic capsules are useful strategies in preventing diabetes. In this review, we aim to elucidate the complex association between gut microbiota and T2DM inflammation, metabolism, and immune disorders, the underlying mechanisms, and translational applications of gut microbiota. This review will provide novel insight into developing individualized therapy for T2DM patients based on gut microbiota immunometabolism.

Aging ◽  
2020 ◽  
Vol 12 (17) ◽  
pp. 17480-17502
Author(s):  
Lijing Zhang ◽  
Wen Zhou ◽  
Libin Zhan ◽  
Shenglin Hou ◽  
Chunyan Zhao ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3719
Author(s):  
Daniela Maria Tanase ◽  
Evelina Maria Gosav ◽  
Ecaterina Neculae ◽  
Claudia Florida Costea ◽  
Manuela Ciocoiu ◽  
...  

Type 2 diabetes mellitus (T2DM) remains one of the most problematic and economic consumer disorders worldwide, with growing prevalence and incidence. Over the last years, substantial research has highlighted the intricate relationship among gut microbiota, dysbiosis and metabolic syndromes development. Changes in the gut microbiome composition lead to an imbalanced gastrointestinal habitat which promotes abnormal production of metabolites, inflammatory status, glucose metabolism alteration and even insulin resistance (IR). Short-chain fatty acids (SCFAs), trimethylamine N-oxide (TMAO), lipopolysaccharide, aromatic amino acids and their affiliated metabolites, contribute to T2DM via different metabolic and immunologic pathways. In this narrative review, we discuss the immunopathogenic mechanism behind gut dysbiosis, T2DM development and the major known diabetic microvascular complications (retinopathy, neuropathy and nephropathy), the beneficial use of pre- and pro-biotics and fecal microbiota transplantation in T2DM management and new findings and future perspectives in this field.


2021 ◽  
Vol 23 (6) ◽  
pp. 541-547
Author(s):  
E. V. Pokrovskaya ◽  
I. A. Sklyanik ◽  
E. A. Shestakova ◽  
M. V. Shestakova

Concerning the uncontrolled growth in the incidence of obesity and Type 2 Diabetes Mellitus (T2DM), numerous research have been carried out to study the pathogenetic mechanisms of progress of these diseases and development of new methods for their prevention and treatment in recent years. T2DM is known to be a multifactorial disease, in the development of which both lifestyle and various environmental factors, and genetic predisposition are involved. At the same time, in recent years, a theory has been discussed that intestinal dysbiosis, which is caused with quantitative and qualitative changes in the gut microbiota (GM) is one of the mechanisms of obesity and T2DM development. At the moment, various methods have been proposed for restoring the normal composition of GM, including the administration of prebiotics and metabiotics that stimulate the growth of gut flora, as well as probiotics, which directly include the necessary beneficial bacteria (mainly Bifidobacterium and Lactobacillus). Fecal microflora transplantation (FMT), which allows transferring an entire microbial community into the recipient's body, rather than individual bacteria is the newest and least studied method of GM normalization. In this connection, this method of GM influencing is of great interest for the prevention and treatment of metabolic diseases.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2996
Author(s):  
Tomohisa Takagi ◽  
Yuji Naito ◽  
Saori Kashiwagi ◽  
Kazuhiko Uchiyama ◽  
Katsura Mizushima ◽  
...  

The human gut microbiota is involved in host health and disease development. Therefore, lifestyle-related diseases such as hypertension (HT), hyperlipidemia (HL), and type 2 diabetes mellitus (T2D) may alter the composition of gut microbiota. Here, we investigated gut microbiota changes related to these diseases and their coexistence. This study involved 239 Japanese subjects, including healthy controls (HC). The fecal microbiota was analyzed through the isolation of bacterial genomic DNA obtained from fecal samples. Although there were no significant differences in the microbial structure between groups, there was a significant difference in the α-diversity between HC and the patients in whom two diseases coexisted. Moreover, Actinobacteria levels were significantly increased, whereas Bacteroidetes levels were significantly decreased in all disease groups. At the genus level, Bifidobacterium levels were significantly increased in the HL and T2D groups, as were those of Collinsella in all disease groups. In contrast, Alistipes levels were significantly lower in the HL group. Furthermore, metabolic enzyme families were significantly increased in all disease groups. Interestingly, the structure and function of the gut microbiota showed similar profiles in all the studied diseases. In conclusion, several changes in the structure of the gut microbiota are associated with T2D, HT, and HL in Japanese subjects.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2528
Author(s):  
Rafael Ballan ◽  
Susana Marta Isay Saad

The increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide has become a burden to healthcare systems. In 2019, around 463 million adults were living with diabetes mellitus, and T2DM accounted for 90 to 95% of cases. The relationship between the gut microbiota and T2DM has been explored with the advent of metagenomic techniques. Genome-wide association studies evaluating the microbiota of these individuals have pointed to taxonomic, functional, and microbial metabolite imbalances and represent a potential intervention in T2DM management. Several microbial metabolites and components, such as imidazole propionate, trimethylamine, and lipopolysaccharides, appear to impair insulin signaling, while short-chain fatty acids, secondary bile acids, and tryptophan metabolites may improve it. In addition, the use of probiotics with the aim of transiently restoring the microbial balance or reducing the effects of microbial metabolites that impair insulin sensitivity has been explored. Herein, we critically review the available literature on the changes in the gut microbiota in T2DM together with potential adjuvant therapies that may improve the health status of this population.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


Sign in / Sign up

Export Citation Format

Share Document