scholarly journals Study on Parameter Optimization and Mechanism of Rigid-Flexible Coupling Underground Engineering Structure of Steel Panel and Polymer

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dengping Hu ◽  
Chunyan Wang ◽  
Zhe Luo ◽  
Xuanxuan Chu

Polymer grouting is carried out between the steel panel and surrounding soil in underground engineering, and the polymer material consists of isocyanates and polyols. The isocyanate/polyol composite slurry expands rapidly due to chemical reaction and solidifies immediately. Then, a dense impermeable polymer layer is formed after rapid expansion of isocyanate and polyol, which is widely used for ground reinforcement and foundation remediation. Thus, a steel panel-polymer composite structure is developed. Mechanical properties of the steel panel-polymer structure are studied. The results show that the steel panel-polymer structure exhibited excellent mechanical properties. The steel panel and polymer layer should be designed above 3 mm and 10 mm in thickness, respectively. The steel panel showed superior mechanical properties to those of polymer layers. Considering good rigidity of the steel panel and good flexibility of the polymer layer, the steel panel and polymer layer presented perfect interfacial contact. It is concluded that the mechanical properties of the whole structure were increasingly enhanced with the increase of the steel panel thickness and the structural flexibility increased with the thickness of the polymer layer. Besides, the combination of the steel panel and polymer layer could also improve the mechanical properties of this coupling structure. This study provided an initial attempt for investigating the feasibility of applying polyurethane foam to steel panels in underground engineering. The stress analysis along the grouting direction inside the prefabricated wall was conducted. It may lay the foundation for further application of polymer grouting in underground engineering.

2019 ◽  
Vol 9 (7) ◽  
pp. 1423
Author(s):  
Seong-Yeoul Yoo ◽  
Jin-Hyung Lee ◽  
Hyung-Jin Shin ◽  
Chan-Gi Park

This study evaluated the performance of a hybrid panel in an improved moveable weir after exposure to accelerated environmental climate conditions. When exposed to a river environment, corrosion problems on improved moveable weir steel panels can occur. To address this, a hybrid panel with structure layering glass fiber-reinforced polymer (GFRP) panels on both sides of the steel panel was used. The steel was, therefore, not exposed to the outside. However, this hybrid panel is a structure that uses a mixture of two materials with different properties and there is the possibility of performance degradation when the GFRP composite material, i.e., the structure that wraps around the bond interface, and the steel panel are exposed to a river environment. Thus, we evaluated the durability of the hybrid panels by repeated exposure to long-term high temperatures, dry–wet environmental cycling, long-term freezing, and freeze–thaw cycling in an accelerated climate deterioration environment. In the flexural tests, the surface processing of the steel panel was shown to be important, with sand-blasted test specimens showing higher flexural strength. For the control specimens, the flexural strength decreased as the thickness of the GFRP panels increased. However, for the sand-blasted specimens, the flexural strength increased as the thickness of the GFRP panels increased. After exposure to accelerated climate deterioration, the flexural strength tests showed that the residual strength increased with panel thickness and that the residual strengths were greater for specimens incorporating sand-blasted steel panels. The results of our testing show that hybrid panels incorporating sand-blasted steel were adequate for use in improved moveable weirs.


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


Soft Matter ◽  
2016 ◽  
Vol 12 (24) ◽  
pp. 5420-5428 ◽  
Author(s):  
Ming Zhong ◽  
Yi-Tao Liu ◽  
Xiao-Ying Liu ◽  
Fu-Kuan Shi ◽  
Li-Qin Zhang ◽  
...  

2017 ◽  
Vol 09 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Xingguo Li ◽  
Bingbing An ◽  
Dongsheng Zhang

Interfacial behavior in the microstructure and the plastic deformation in the protein matrix influence the overall mechanical properties of biological hard tissues. A cohesive finite element model has been developed to investigate the inelastic mechanical properties of bone-like biocomposites consisting of hard mineral crystals embedded in soft biopolymer matrix. In this study, the complex interaction between plastic dissipation in the matrix and bonding properties of the interface between minerals and matrix is revealed, and the effect of such interaction on the toughening of bone-like biocomposites is identified. For the case of strong and intermediate interfaces, the toughness of biocomposites is controlled by the post yield behavior of biopolymer; the matrix with low strain hardening can undergo significant plastic deformation, thereby promoting enhanced fracture toughness of biocomposites. For the case of weak interfaces, the toughness of biocomposites is governed by the bonding property of the interface, and the post-yield behavior of biopolymer shows negligible effect on the toughness. The findings of this study help to direct the path for designing bioinspired materials with superior mechanical properties.


2015 ◽  
Vol 236 ◽  
pp. 53-61
Author(s):  
Wojciech Jurczak

The paper presents the results of investigations on mechanical properties and electrochemical potential distribution within arc welded (TIG) and friction stir welded (FSW) joints subjected to slow strain rate tests. The materials investigated were high-strength 7xxx series (7020 and its modification 7020M) aluminum alloys intended for shipbuilding. The objectives were joint quality assessment and comparison of the advantages of new FSW method with the traditional TIG methods commonly utilized in shipbuilding industry. Joint quality was evaluated based on mechanical investigations, hardness distribution tests and simultaneous electrochemical corrosion potential measurements at various locations within the welded joints.Initiation of corrosion processes on TIG and FSW joints was identified as a radical decrease in corrosion potential related to load followed by oxide layer cracking. Arc welded (TIG) joints of 7xxx series alloys undergo corrosion at lower values of tensile load applied as compared to the FSW joints. Superior mechanical properties and higher corrosion resistance of the FSW joints make this technology well-suited for joining high-strength 7xxx series alloys.


2021 ◽  
pp. 2011145
Author(s):  
Runze Chen ◽  
Yunsheng Zhang ◽  
Qingyi Xie ◽  
Zixin Chen ◽  
Chunfeng Ma ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7029
Author(s):  
Carlos Thomas ◽  
José Sainz-Aja ◽  
Israel Sosa ◽  
Jesús Setién ◽  
Juan A. Polanco ◽  
...  

The high consumption of natural resources in the industrial sector makes it necessary to implement measures that enable the reuse of the waste generated, seeking to achieve circular economy. This work assesses the viability of an alternative to the use of CEM III B 32.5 R cement in mortars for the internal coating of centrifugally spun cast iron pipes for water piping. The proposal is to reuse the slag generated in the casting process after being finely ground, as an addition mixed with CEM I 52.5 R cement, which is basically Portland clinker. In order to analyse this possibility, an extensive experimental campaign was carried out, including the analysis of the cupola slag (micro-structural and chemical composition, leachates, setting time, vitrification, puzzolanicity and resistance to sulphate) and regarding the mortars (workability and mechanical properties). The experimental programme has shown that the optimum substitution is achieved with a replacement percentage of 20% of the cement, with which similar workability, superior mechanical properties and guaranteed resistance to sulphate attack are obtained. In addition, both economic and environmental savings are achieved by not having to transport or landfill the waste. In addition, the new cement is cheaper than the cement currently used.


Sign in / Sign up

Export Citation Format

Share Document