scholarly journals Power Density Case Study for 5G mmWave Array Antennas

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dianyuan Qi ◽  
Fangzhu Zou ◽  
Jing Zhao ◽  
Shaobin Sun ◽  
Huanbin Wei ◽  
...  

As 5G millimeter wave (mmWave) wireless device involves some new technologies, such as beamforming, the radiofrequency (RF) exposure compliance test for the 5G mmWave wireless device is significantly complicated. In order to shorten the compliance period for 5G mmWave terminals, the relevant regulatory authorities recommend a combination of numerical simulation and measurements to demonstrate compliance. To verify the feasibility of this method, the RF exposure test conducted in this paper was a reverse procedure according to IEEE (the Institute of Electrical and Electronics Engineers) standards. First, actual measurements under various conditions, including different beam configurations, different test distances, different input power levels, different duty cycle, and nonpeak directions, were performed, and the changing trend of PD over testing conditions was analyzed. Then one dual-polarized patch antenna array was selected for simulation analysis. The feasibility of the method proposed in IEEE standards was proved through the comparison of the results experiment and numerical analysis.

2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4271
Author(s):  
Lucia Cattani ◽  
Paolo Cattani ◽  
Anna Magrini

Photovoltaic panel efficiency can be heavily affected by soiling, due to dust and other airborne particles, which can determine up to 50% of energy production loss. Generally, it is possible to reduce that impact by means of periodic cleaning, and one of the most efficient cleaning solutions is the use of demineralized water. As pauperization of traditional water sources is increasing, new technologies have been developed to obtain the needed water amount. Water extracted from the air using air to water generator (AWG) technology appears to be particularly suitable for panel cleaning, but its effective employment presents issues related to model selection, determining system size, and energy efficiency. To overcome such issues, the authors proposed a method to choose an AWG system for panel cleaning and to determine its size accordingly, based on a cleaning time optimization procedure and tailored to AWG peculiarities, with an aim to maximize energy production. In order to determine the energy loss due to soiling, a simplified semiempirical model (i.e., the DIrt method) was developed as well. The methodology, which also allows for energy saving due to an optimal cleaning frequency, was applied to a case study. The results show that the choice of the most suitable AWG model could prevent 83% of energy loss related to soling. These methods are the first example of a design tool for panel cleaning planning involving AWG technology.


Heritage ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 57-87 ◽  
Author(s):  
Ahmed Khalil ◽  
Naglaa Hammouda ◽  
Khaled El-Deeb

Sustainable design is believed to stand on the opposite side of heritage conservation. This view is supported by the fact that sustainable design requires invasive measures to implement new technologies and treatments that challenge the principle of minimum intervention in heritage conservation. Another point of view sees heritage conservation as an already act of sustainable development that protects and preserves social and cultural resources such as heritage buildings and their intangible values. On the other hand, research and practice have proven that heritage buildings can be the subjects of sustainable design projects that achieve outstanding measures of sustainability and energy efficiency while not compromising the authenticity of the heritage value of the building. This sustainable conservation reaches its peak in adaptive-reuse projects of heritage buildings as reusing the building guarantees its ongoing maintenance and promotes its social, cultural and economic values to society, while giving it the ability to withstand modern users’ comfort and energy efficiency standards. This research presents a case study of the adaptive-reuse project of Villa Antoniadis in Alexandria; a heritage building built in the mid-nineteenth century and in the process of a major adaptive-reuse project. The history and significance of the building will be studied as well as the conservation values of the current project, then some proposals for interventions that could achieve more energy efficiency for the project while conserving the building are discussed. The research included a simulation of the building, using building energy modelling software for the current adaptive-reuse project as a base case, and the hypothetical application of different proposed sustainable interventions such as thermal insulation, double glazing, shading, lighting control, natural ventilation, and photovoltaic energy generation, where the energy savings potentials for each proposed intervention were studied. The simulation proved a possible reduction of 36.5% in the cooling, heating and lighting energy consumption as well as generated 74.7% of the energy required for cooling, heating and lighting from renewable energy sources.


Author(s):  
Yuanbin Wang ◽  
Robert Blache ◽  
Xun Xu

Additive manufacturing (AM) has experienced a phenomenal expansion in recent years and new technologies and materials rapidly emerge in the market. Design for Additive Manufacturing (DfAM) becomes more and more important to take full advantage of the capabilities provided by AM. However, most people still have limited knowledge to make informed decisions in the design stage. Therefore, an interactive DfAM system in the cloud platform is proposed to enable people sharing the knowledge in this field and guide the designers to utilize AM efficiently. There are two major modules in the system, decision support module and knowledge management module. A case study is presented to illustrate how this system can help the designers understand the capabilities of AM processes and make rational decisions.


2018 ◽  
Vol 878 ◽  
pp. 89-94 ◽  
Author(s):  
Er Lei Wang

Implementing monitoring over construction process of old bridge’s reinforcement serves as an important measure to ensure construction quality and safety and realize the goal of reinforcement. This paper, with a case study of the maintenance and reinforcement project of Zhicheng Yangtze River Bridge (steel truss highway-railway combined bridge), adopted MIDAS to establish finite element analysis model, and with stress and deformation as monitoring parameters, completed the construction monitoring work, numerical simulation analysis and site test for the reinforcement project.


Author(s):  
Steven Tebby ◽  
Ebrahim Esmailzadeh ◽  
Ahmad Barari

The torsion stiffness of an automotive chassis can be determined using an analytical approach based purely on geometry, using an experimental method, or alternatively by employing a Finite Element Analysis (FEA) process. These three methods are suitable at different design stages and combined together could prove to be practical methods of determining the torsion stiffness of a chassis. This paper describes and compares two distinct FEA processes to determine the torsion stiffness of an automotive chassis during the detailed design stage. The first process iteratively applies forces to the model and records displacements, while the second process gradually applies vertical displacements in place of force to determine the torsional stiffness threshold. Each method is explained and supported with a case study to provide a basis of comparison of the results.


2017 ◽  
Vol 3 (1) ◽  
pp. 142-163 ◽  
Author(s):  
Raj Kumar Banjara ◽  
Meena Poudel

Epistemology of organic agriculture is logically and practically associated with the conventional farming practices. Organic agriculture can contribute in the social life of people by improving health and ecology. It is even more important for the preservation of natural resources. In relation to the importance of organic agriculture, the main objective of this study was to develop the sustainable model of organic agriculture. The study was based on the inductive approach; qualitative design. Study was conducted in 4 districts of Nepal among the 614 respondents. The result found that there was significant contribution made by the organic agriculture to improve the socio-economic status of farmers as well as to care the relationship between the human being and their environment. Family farming system is the fundamental base for changing trend of agriculture in worldwide practices. There is need to protect and enhance family farming through farmers’ cooperative for the sustainability of organic agriculture. The study developed the sustainable model covering the need of infrastructure development, policy improvement, and motivational factors for farmers and changing process of modern agriculture to organic agriculture. The roles of government, non-government, private sectors, individual farmers and consumers are equally important for the sustainability of organic agriculture. The model focuses on the collective effort of all responsible stakeholders. There is need to test the effectiveness of this model.


Sign in / Sign up

Export Citation Format

Share Document