scholarly journals Development of Detection Equipment for a Polymerase Chain Reaction with a Loop-Mediated Isothermal Amplification Reaction

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wei-Chien Weng ◽  
Yu-Cheng Lin

In this research, low-cost detection equipment intended to carry out a polymerase chain reaction (PCR) through a loop-mediated isothermal amplification (LAMP) reaction is presented. We designed the internal structure with SolidWorks and AutoCAD. The equipment comprised a Raspberry Pi development board, a temperature control module, and a fluorescent optical detection module. The main program, temperature control, florescent signal processing, signal analysis, and screen display were programmed with Java. We applied the digital temperature controller module to obtain precise temperature control of the equipment. The experimental results showed that the heating rate of the testing equipment could reach 65°C within 4 minutes and could be accurately controlled to within 1°C. The duration of the LAMP PCR experiment was found to be significantly shorter than that of the conventional PCR. The results also revealed that with LAMP PCR, the temperature could be accurately controlled within a specific range, and the designed heating tasks could be completed within 15 minutes to one hour, depending on the specimen. The equipment could also correctly read both the positive and negative reactions with fluorescent signals. Thus, the proposed LAMP PCR detection equipment is more sensitive, more stable, and more cost-effective than other conventional alternatives and can be used in numerous clinical applications.

2019 ◽  
Vol 14 ◽  
pp. 155892501882072
Author(s):  
Shunji Yu ◽  
Wenjia Gu ◽  
Yi Yu ◽  
Qinfeng Qu ◽  
Yi’nan Zhang

In the chaotic market of fur goods, genetic distinction is increasingly important for identifying species. A vast diversity of species identification methods has been proposed, while little is developed, particularly those easy, fast, and cost-effective ones. In this study, a simple and reliable novel loop-mediated isothermal amplification method for identifying cytochrome c oxidase I of felis and vulpes was established. It saves laborious post–polymerase chain reaction procedures and shortens the time for high-fidelity gene amplification. The sensitivity of this method for felis and vulpes identification, which is well matched to quantitative polymerase chain reaction, could be 10 or 1.0 pg, respectively. Predominantly, the sensitivity of loop-mediated isothermal amplification is more tolerant to those polymerase chain reaction inhibitors such as pigments, dyes, or other fur ingredients, compared to quantitative polymerase chain reaction. Even without costly specialized equipment, a water bath is sufficient for genetic distinction. Our approach is a new technique with broad application perspective, such as on-site species identity tests, commercial fraud, and wildlife crimes.


2021 ◽  
Vol 19 (2) ◽  
pp. 147-151
Author(s):  
M. Kunchev ◽  
V. Belcheva ◽  
E. Grigorov

Q fever, which is caused by Coxiella burnetii, a small, pleomorphic intracellular bacterium, is the most widespread zoonosis in the world. The chronic form of the disease can lead to disability and death. Rapid diagnosis of Q fever is needed in order that effective treatment can be initiated. The conventional retrospective diagnosis of Q fever, based on serology, is useless for the treatment of afflicted patients. Thus, molecular methods have been created to close the diagnostic gap between the onset of the disease and the presence of specific antibodies in serum. A polymerase chain reaction is a suitable and reliable method with high sensitivity and specificity, but it requires expensive equipment and post-amplification protocol. Loop-mediated isothermal amplification (LAMP) is an isothermal technique, conducted at constant temperature that can amplify a negligible amount of DNA to more than 109 copies within one hour, using special primers and polymerase. We have tested the sensitivity and specificity of LAMP in the detection of C. burnetii. The mean positive rate of LAMP and polymerase chain reaction in patients was 100% and 74%, respectively. LAMP reacted negatively with non-C. burnetii pathogens and non-infected blood samples. We conclude that LAMP is a sensitive and specific technique for the detection of C. burnetii and has advantages over serological methods and PCR that make it attractive for diagnosing Q fever in countries around the world.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Faiz Padzil ◽  
Abdul Razak Mariatulqabtiah ◽  
Wen Siang Tan ◽  
Kok Lian Ho ◽  
Nurulfiza Mat Isa ◽  
...  

Over the years, development of molecular diagnostics has evolved significantly in the detection of pathogens within humans and their surroundings. Researchers have discovered new species and strains of viruses, while mitigating the viral infections that occur, owing to the accessibility of nucleic acid screening methods such as polymerase chain reaction (PCR), qualitative (real-time) polymerase chain reaction (qPCR) and reverse-transcription qPCR (RT-qPCR). While such molecular detection methods are widely utilized as the benchmark, the invention of isothermal amplifications has also emerged as a reliable tool to improvise on-field diagnosis without dependence on thermocyclers. Among the established isothermal amplification technologies are loop-mediated isothermal amplification (LAMP), recombinant polymerase amplification (RPA), strand displacement activity (SDA), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA) and rolling circle amplification (RCA). This review highlights the past research on and future prospects of LAMP, its principles and applications as a promising point-of-care diagnostic method against avian viruses.


Sign in / Sign up

Export Citation Format

Share Document