scholarly journals Path Planning and Control of a Quadrotor UAV Based on an Improved APF Using Parallel Search

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tianpeng Huang ◽  
Deqing Huang ◽  
Na Qin ◽  
Yanan Li

Control and path planning are two essential and challenging issues in quadrotor unmanned aerial vehicle (UAV). In this paper, an approach for moving around the nearest obstacle is integrated into an artificial potential field (APF) to avoid the trap of local minimum of APF. The advantage of this approach is that it can help the UAV successfully escape from the local minimum without collision with any obstacles. Moreover, the UAV may encounter the problem of unreachable target when there are too many obstacles near its target. To address the problem, a parallel search algorithm is proposed, which requires UAV to simultaneously detect obstacles between current point and target point when it moves around the nearest obstacle to approach the target. Then, to achieve tracking of the planned path, the desired attitude states are calculated. Considering the external disturbance acting on the quadrotor, a nonlinear disturbance observer (NDO) is developed to guarantee observation error to exponentially converge to zero. Furthermore, a backstepping controller synthesized with the NDO is designed to eliminate tracking errors of attitude. Finally, comparative simulations are carried out to illustrate the effectiveness of the proposed path planning algorithm and controller.

2021 ◽  
Vol 9 (3) ◽  
pp. 252
Author(s):  
Yushan Sun ◽  
Xiaokun Luo ◽  
Xiangrui Ran ◽  
Guocheng Zhang

This research aims to solve the safe navigation problem of autonomous underwater vehicles (AUVs) in deep ocean, which is a complex and changeable environment with various mountains. When an AUV reaches the deep sea navigation, it encounters many underwater canyons, and the hard valley walls threaten its safety seriously. To solve the problem on the safe driving of AUV in underwater canyons and address the potential of AUV autonomous obstacle avoidance in uncertain environments, an improved AUV path planning algorithm based on the deep deterministic policy gradient (DDPG) algorithm is proposed in this work. This method refers to an end-to-end path planning algorithm that optimizes the strategy directly. It takes sensor information as input and driving speed and yaw angle as outputs. The path planning algorithm can reach the predetermined target point while avoiding large-scale static obstacles, such as valley walls in the simulated underwater canyon environment, as well as sudden small-scale dynamic obstacles, such as marine life and other vehicles. In addition, this research aims at the multi-objective structure of the obstacle avoidance of path planning, modularized reward function design, and combined artificial potential field method to set continuous rewards. This research also proposes a new algorithm called deep SumTree-deterministic policy gradient algorithm (SumTree-DDPG), which improves the random storage and extraction strategy of DDPG algorithm experience samples. According to the importance of the experience samples, the samples are classified and stored in combination with the SumTree structure, high-quality samples are extracted continuously, and SumTree-DDPG algorithm finally improves the speed of the convergence model. Finally, this research uses Python language to write an underwater canyon simulation environment and builds a deep reinforcement learning simulation platform on a high-performance computer to conduct simulation learning training for AUV. Data simulation verified that the proposed path planning method can guide the under-actuated underwater robot to navigate to the target without colliding with any obstacles. In comparison with the DDPG algorithm, the stability, training’s total reward, and robustness of the improved Sumtree-DDPG algorithm planner in this study are better.


2011 ◽  
Vol 142 ◽  
pp. 12-15
Author(s):  
Ping Feng

The paper puts forward the dynamic path planning algorithm based on improving chaos genetic algorithm by using genetic algorithms and chaos search algorithm. In the practice of navigation, the algorithm can compute at the best path to meet the needs of the navigation in such a short period of planning time. Furthermore,this algorithm can replan a optimum path of the rest paths after the traffic condition in the sudden.


2018 ◽  
Vol 159 ◽  
pp. 02029 ◽  
Author(s):  
Chang Kyu Kim ◽  
Huy Hung Nguyen ◽  
Dae Hwan Kim ◽  
Hak Kyeong Kim ◽  
Sang Bong Kim

In path planning field, Automatic guided vehicle (AGV) has to move from an initial point towards a target point with capability to avoid obstacles. There are A*, D* and D* lite path planning algorithms in the path planning algorithm. This paper proposes a modified D* lite path planning algorithm using the most efficient D* lite among these algorithms. The modified D* lite path planning algorithm is to improve these D* lite path planning algorithm’s weaknesses such as traversing across obstacles sharp corners, or traversing between two obstacles. To do this task, the followings are done. First, a work space is divided into square cells. Second, cost of each edge connecting current node to neighbor nodes is calculated. Third, the shortest paths from the initial point to all multiple target points are computed and the shortest paths from any target point to remaining target points including the goal point are computed by using Hamilton path. Fourth, a cost-minimal path is re-calculated as soon as the laser sensor detects an obstacle and make an updated list of target points. Finally, the validity of the proposed modified D* lite path planning algorithm is verified through simulation and experimental results.


2018 ◽  
Vol 10 (6) ◽  
Author(s):  
Vinoth Venkatesan ◽  
Joseph Seymour ◽  
David J. Cappelleri

This paper presents a novel assembly sequence planning (ASP) procedure utilizing a subassembly based search algorithm (SABLS) for micro-assembly applications involving geometric and other assembly constraints. The breakout local search (BLS) algorithm is adapted to provide sequencing solutions in assemblies with no coherent solutions by converting the final assembly into subassemblies which can be assembled together. This is implemented using custom-made microparts which fit together only in a predefined fashion. Once the ASP is done, the parts are manipulated from a cluttered space to their final positions in the subassemblies using a path-planning algorithm based on rapidly exploring random tree (RRT*), a random-sampling based execution, and micromanipulation motion primitives. The entire system is demonstrated by assembling LEGO® inspired microparts into various configurations which involve subassemblies, showing the versatility of the system.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zihan Yu ◽  
Linying Xiang

In recent years, the path planning of robot has been a hot research direction, and multirobot formation has practical application prospect in our life. This article proposes a hybrid path planning algorithm applied to robot formation. The improved Rapidly Exploring Random Trees algorithm PQ-RRT ∗ with new distance evaluation function is used as a global planning algorithm to generate the initial global path. The determined parent nodes and child nodes are used as the starting points and target points of the local planning algorithm, respectively. The dynamic window approach is used as the local planning algorithm to avoid dynamic obstacles. At the same time, the algorithm restricts the movement of robots inside the formation to avoid internal collisions. The local optimal path is selected by the evaluation function containing the possibility of formation collision. Therefore, multiple mobile robots can quickly and safely reach the global target point in a complex environment with dynamic and static obstacles through the hybrid path planning algorithm. Numerical simulations are given to verify the effectiveness and superiority of the proposed hybrid path planning algorithm.


Author(s):  
L. M. González-deSantos ◽  
J. Martínez-Sánchez ◽  
H. González-Jorge ◽  
P. Arias

Abstract. UAV technology has become a useful tool for the inspection of infrastructures. Structural Health Monitoring methods are already implementing these vehicles to obtain information about the condition of the structure. Several systems based on close range remote sensing and contact sensors have been developed. In both cases, in order to perform autonomous missions in hard accessible areas or with obstacles, a path planning algorithm that calculates the trajectory to be followed by the UAV to navigate these areas is mandatory. This works presents a UAV path planning algorithm developed to navigate indoors and outdoors. This algorithm does not only calculate the waypoints of the path, but the orientation of the vehicle for each location. This algorithm will support a specific UAV-based contact inspection of vertical structures. The required input data consist of a point cloud of the environment, the initial position of the UAV and the target point of the structure where the contact inspection will be performed.


2020 ◽  
Vol 10 (21) ◽  
pp. 7846
Author(s):  
Hyejeong Ryu

An efficient, hierarchical, two-dimensional (2D) path-planning method for large complex environments is presented in this paper. For mobile robots moving in 2D environments, conventional path-planning algorithms employ single-layered maps; the proposed approach engages in hierarchical inter- and intra-regional searches. A navigable graph of an environment is constructed using segmented local grid maps and safe junction nodes. An inter-regional path is obtained using the navigable graph and a graph-search algorithm. A skeletonization-informed rapidly exploring random tree* (SIRRT*) efficiently computes converged intra-regional paths for each map segment. The sampling process of the proposed hierarchical path-planning algorithm is locally conducted only in the start and goal regions, whereas the conventional path-planning should process the sampling over the entire environment. The entire path from the start position to the goal position can be achieved more quickly and more robustly using the hierarchical approach than the conventional single-layered method. The performance of the hierarchical path-planning is analyzed using a publicly available benchmark environment.


2013 ◽  
Vol 373-375 ◽  
pp. 2088-2091
Author(s):  
Quan Liang ◽  
Dong Hai Su ◽  
Jie Wang ◽  
Ye Mu Wang

For the problem of poor processing efficiency of iso-parameter tool path planning algorithm, this paper proposed a non iso-parameter trajectory planning algorithm. First established a mathematical model of five-axis machining toroid cutter, then analyzed the toroid cutter and machining surface partial differential geometric properties, proposed one kind of iso-scallop path search algorithm. Finally, using the above algorithm developed an application of trajectory planning for free-form surface and generated tool paths for such surface. The trajectories generated verified the algorithm is practicable.


Author(s):  
Elia Nadira Sabudin ◽  
Rosli Omar ◽  
Sanjoy Kumar Debnath ◽  
Muhammad Suhaimi Sulong

<span lang="EN-US">Path planning is crucial for a robot to be able to reach a target point safely to accomplish a given mission. In path planning, three essential criteria have to be considered namely path length, computational complexity and completeness. Among established path planning methods are voronoi diagram (VD), cell decomposition (CD), probability roadmap (PRM), visibility graph (VG) and potential field (PF). The above-mentioned methods could not fulfill all three criteria simultaneously which limits their application in optimal and real-time path planning. This paper proposes a path PF-based planning algorithm called dynamic artificial PF (DAPF). The proposed algorithm is capable of eliminating the local minima that frequently occurs in the conventional PF while fulfilling the criterion of path planning. DAPF also integrates path pruning to shorten the planned path. In order to evaluate its performance, DAPF has been simulated and compared with VG in terms of path length and computational complexity. It is found that DAPF is consistent in generating paths with low computation time in obstacle-rich environments compared to VG. The paths produced also are nearly optimal with respect to VG.</span>


Sign in / Sign up

Export Citation Format

Share Document