scholarly journals Three-Dimensional Reconstruction and Numerical Simulation Analysis of Acid-Corroded Sandstone Based on CT

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zizhen Miao ◽  
Shuguang Li ◽  
Jiangsheng Xie ◽  
Runke Huo ◽  
Fan Ding ◽  
...  

Due to its unique technological characteristics, coal mining and production often encounter an acid corrosion environment caused by acid gases. Acid erosion and a series of chemical reactions caused by it often led to the deterioration of coal, rock, support structure, etc. and induced serious safety accidents. To further explore the macro-mesoscopic damage evolution law and failure mechanisms of rock masses under corrosion conditions through numerical simulation, a zonal refined numerical model that can reflect the acid corrosion characteristics of sandstone is established based on CT and digital image processing (DIP). The uniaxial compression test of corroded sandstone is simulated by ABAQUS software. Comparing the numerical simulation results with the physical experiment results, we found that the three-dimensional finite element model based on CT scanning technology can genuinely reflect sandstone’s corrosion characteristic. The numerical simulation results of the stress-strain curve and macroscopic failure mode of the acid-corroded sandstone are in good agreement with the experimental results, which provides a useful method for further studying the damage evolution mechanism of the acid-corroded rock mass. Furthermore, the deformation and damage evolution law of the corroded sandstone under uniaxial compression is qualitatively analyzed based on the numerical simulation. The results show that the rock sample’s axial displacement decreases gradually from top to bottom under the axial load, and the vertical variation is relatively uniform. In contrast, the rock sample’s removal gradually increases with the increase of axial pressure, and the growth presents a certain degree of nonuniformity in the vertical. The acid-etched rock sample’s damage starts from both the end and the middle; it first appears in the corroded area. Moreover, with the displacement load increase, it gradually develops and is merged in the middle of the rock sample and forms macroscopic damage.

2013 ◽  
Vol 464 ◽  
pp. 375-380 ◽  
Author(s):  
Ling Liu ◽  
Chong Xin Liu ◽  
Yi Fan Liao

In this paper, a new five-dimensional hyperchaotic system by introducing two additional states feedback into a three-dimensional smooth chaotic system. With three nonlinearities, this system has more than one positive Lyapunov exponents. Based on the fractional derivative theory, the fractional-order form of this new hyperchaotic system has been investigated. Through predictor-corrector algorithm, the system is proved by numerical simulation analysis. Simulation results are provided to illustrate the performance of the fractional-order hyperchaotic attractors well.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jianwang Li ◽  
Yu Zhou ◽  
Wei Sun ◽  
Zheng Sun

Cavities and flaws are common types of defects in rock specimens that have an important impact on the mechanical properties of rockmass. In this paper, cement mortar was used to prefabricate a rock-like specimen with two cavities and a single flaw, and the uniaxial compression test was carried out. The process of fracture evolution on the specimen surface was obtained by using photography technology. The evolution regularity of a fracture was monitored by utilizing acoustic emission (AE) technology during the process of the specimen failure. Moreover, three-dimensional (3D) tomograms of specimens after uniaxial compression were obtained by using computerized tomography (CT) scanning technology, investigating the development characteristics of microcracks and the distribution of the final macrofractures. The particle flow code in two dimensions (PFC2D) program was used to simulate the mechanical behavior of brittle rock combining with microcrack propagation. The calculated stress-strain curve, AE features, and fracture distribution of the specimen obtained from the PFC2D simulation were relatively consistent with the experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaolin Yang ◽  
Genhui Wang ◽  
Hongzhao Li ◽  
Jiang Fan

To analyze the causes of failure of cubic concrete test specimens under quasistatic axial compression, microtests and finite element numerical simulation of C40 cubic concrete test specimens were conducted without the freeze-thaw cycle and with 50 freeze-thaw cycles. Based on the analysis of the microstructure of concrete, the variation law of the full curve of stress and strain was analyzed by the uniaxial compression test and the splitting tensile test of concrete. The results show that freeze-thaw damage is mainly caused by the cyclic reciprocating stress of the micropore structure inside the concrete. The peak stress of concrete uniaxial compression and splitting tensile strength gradually decrease with the number of freeze-thaw cycles; the full stress-strain curve tends to shift downward and to the right. Finite element analysis shows that under the quasistatic uniaxial compression loading condition, the stress and strain fields in the test specimens are symmetrically distributed but nonuniform. The plastic deformation of the concrete weakens the nonuniformity of the stress distribution and is closer to the experimental failure morphology.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1156
Author(s):  
Wenjie Qi ◽  
Bowen Liu ◽  
Tian Liang ◽  
Jian Chen ◽  
Deyong Chen ◽  
...  

This paper presents a micro-electromechanical systems (MEMS)-based integrated triaxial electrochemical seismometer, which can detect three-dimensional vibration. By integrating three axes, the integrated triaxial electrochemical seismometer is characterized by small volume and high symmetry. The numerical simulation results inferred that the integrated triaxial electrochemical seismometer had excellent independence among three axes. Based on the experimental results, the integrated triaxial electrochemical seismometer had the advantage of small axial crosstalk and could detect vibration in arbitrary directions. Furthermore, compared with the uniaxial electrochemical seismometer, the integrated triaxial electrochemical seismometer had similar sensitivity curves ranging from 0.01 to 100 Hz. In terms of random ground motion response, high consistencies between the developed integrated triaxial electrochemical seismometer and the uniaxial electrochemical seismometer could be easily observed, which indicated that the developed integrated triaxial electrochemical seismometer produced comparable noise levels to those of the uniaxial electrochemical seismometer. These results validated the performance of the integrated triaxial electrochemical seismometer, which has a good prospect in the field of deep geophysical exploration and submarine seismic monitoring.


2014 ◽  
Vol 940 ◽  
pp. 132-135 ◽  
Author(s):  
Yi Fan Zhao ◽  
Ling Sha ◽  
Yi Zhu

Established the dynamics simulation analysis model of crane hoisting mechanism based on the theory of dynamics in Adams software, and then through the three dimensional model of lifting mechanism dynamics entities, the constraints, load, drive can be added, the motion law can be defined to simulation analysis the change of the force of wire rope, the change of displacement, velocity and acceleration of lifting weight in the lifting process. On the basis of the simulation results, it can make a great improvement for the structure of crane and provide a meaningful theoretical reference for the hoisting machinery innovation design.


2014 ◽  
Vol 989-994 ◽  
pp. 982-985
Author(s):  
Jun Chen ◽  
Xiao Jun Ye

ANSYS-LS/DYNA 3D finite element software projectile penetrating concrete target three-dimensional numerical simulation , has been the target characteristics and destroy ballistic missile trajectory , velocity and acceleration and analyze penetration and the time between relationship , compared with the test results , the phenomenon is consistent with the simulation results. The results show that : the destruction process finite element software can better demonstrate concrete tests revealed the phenomenon can not be observed , estimated penetration depth and direction of the oblique penetration missile deflection .


2019 ◽  
Vol 35 (3) ◽  
pp. 367-376 ◽  
Author(s):  
Qiang Shi ◽  
Hanping Mao ◽  
Xianping Guan

Abstract. To analyze the droplet deposition under the influence of the flow field of an unmanned aerial vehicle (UAV), a hand-held three-dimensional (3D) laser scanner was used to scan 3D images of the UAV. Fluent software was used to simulate the motion characteristics of droplets and flow fields under the conditions of a flight speed of 3 m/s and an altitude of 1.5 m. The results indicated that the ground deposition concentration in the nonrotor flow field was high, the spray field width was 2.6 m, and the droplet deposition concentration was 50 to 200 ug/cm2. Under the influence of the rotor flow field, the widest deposition range of droplets reached 12.8 m. Notably, the droplet deposition uniformity worsened, and the concentration range of the droplet deposition was 0 to 500 ug/cm2. With the downward development of the downwash flow field, the overall velocity of the flow field gradually decreased, and the influence interval of the flow field gradually expanded. In this article, the droplet concentration was verified under simulated working conditions by a field experiment, thereby demonstrating the reliability of the numerical simulation results. This research could provide a basis for determining optimal UAV operating parameters, reducing the drift of droplets and increasing the utilization rate of pesticides. Keywords: Unmanned aerial vehicle (UAV), Aerial application, Downwash flow field, Droplet deposition, Simulation analysis.


2012 ◽  
Vol 562-564 ◽  
pp. 1438-1441
Author(s):  
Li Hua Fu ◽  
Juan Juan Jiang ◽  
Dai Xing Zhang ◽  
Hai Quan Li ◽  
Hua Song ◽  
...  

In this article, the Pro/Engineer virtual prototyping technology is used for three dimensional entity modeling, assembly, and simulation analysis of 1000KN·m large backstop in four design plans to confirm the integrity and assembling of backstop. By using the ANSYS/LS-DYNA software, it makes numerical simulation analysis of the backstop in non-return process, and through the analysis comparison to the simulation result, it obtains the optimization design plan of the 1000KN·m backstop.


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


2012 ◽  
Vol 588-589 ◽  
pp. 1355-1358
Author(s):  
Xiao Xing ◽  
Guo Ming Ye

During the splicing process of pneumatic splicer, the principle of yarn splicing is closely related to the flow field inside the splicing chamber. This paper presents a numerical simulation of the flow char-acteristics inside the splicing chamber of the pneumatic splicer. A three-dimensional grid and the realizable tur¬bulence model are used in this simulation. The numerical results of veloc¬ity vectors distribution inside the chamber are shown. Streamlines starting from the two air injectors are also acquired. Based on the simulation, the principle of yarn splicing of the pneumatic splicer is discussed. The airflow in the splicing chamber can be divided into three regions. In addition, the simulation results have well sup¬ported the principle of yarn splicing of pneumatic splicer claimed by the splicing chamber makers.


Sign in / Sign up

Export Citation Format

Share Document