Numerical Simulation of the Kinetic Energy Projectile Oblique Penetration into the Concrete

2014 ◽  
Vol 989-994 ◽  
pp. 982-985
Author(s):  
Jun Chen ◽  
Xiao Jun Ye

ANSYS-LS/DYNA 3D finite element software projectile penetrating concrete target three-dimensional numerical simulation , has been the target characteristics and destroy ballistic missile trajectory , velocity and acceleration and analyze penetration and the time between relationship , compared with the test results , the phenomenon is consistent with the simulation results. The results show that : the destruction process finite element software can better demonstrate concrete tests revealed the phenomenon can not be observed , estimated penetration depth and direction of the oblique penetration missile deflection .

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Fei Yao ◽  
Guangyu Chen ◽  
Jianhong Su

To identify shield grouting quality based on impact echo method, an impact echo test of segment-grouting (SG) test piece was carried out to explore effect of acoustic impedance of grouting layers and grouting defects on impact echo law. A finite element numerical simulation on the impact echo process was implemented. Test results and simulation results were compared. Results demonstrated that, under some working conditions, finite element simulation results and test results both agree with theoretical values. The acoustic impedance ratio of SG material influenced the echo characteristics significantly. But thickness frequency could not be detected under some working conditions because the reflected energy is weak. Frequency feature under grouting defects was more complicated than that under no grouting defects.


2010 ◽  
Vol 20-23 ◽  
pp. 1405-1408 ◽  
Author(s):  
Wei Hua Kuang ◽  
Qun Liu

Drawing process is an important technology in shaping products. In the paper, the geometric surfaces of tools and sheet were modeled by Pro/E software, and a 3D finite element model of the cylindrical drawing process was developed by DYNAFORM. Numerical simulation results showed the distribution of stress, strain and thickness. FLD showed no material was in crack area and risk crack area. The drawing process could be successfully completed in one stroke. The simulation results were helpful for the die design.


2014 ◽  
Vol 898 ◽  
pp. 136-139
Author(s):  
Chang Feng Men ◽  
Wen Wen Du ◽  
Cui Hong Han

In order to research on the hot stamping property of high strength steel, the stamping forming of USIBOR1500P is simulated by the nonlinear finite element software Dynaform and Ansys/ls-dyna. The initial data simulated on USIBOR1500P is obtained by the hot tensile test. The simulation results show that the martensite weight percentage and Vickers hardness are in inverse proportion to stamping speed and initial die temperature.


2016 ◽  
Vol 723 ◽  
pp. 801-806
Author(s):  
Tie Jun Tao ◽  
Lian Sheng Liu ◽  
En An Chi ◽  
Ming Sheng Zhao

The effect of cut height on collapse area is simulated and analyzed by dynamic finite element software. Meanwhile, the simulated collapse processes of the cooling tower with different cut height were completed in a parallel study, the results of which are briefly introduced in this paper. The results show that: as the cut height increases, ground vibration on surrounding structures and collapse area of cooling tower decreases. At last, numerical simulation results were used in blasting project, which reduced hazard of collapse vibration and verify the scientific of this method.


2012 ◽  
Vol 562-564 ◽  
pp. 1373-1376
Author(s):  
Shi Min Xu ◽  
Hua Gui Huang ◽  
Deng Yue Sun

A new manufacturing method of spiral hot bending process for the end sheet of tubular pile was introduced in this paper. A three-dimensional (3-D) thermal-mechanical coupled elastic-plasticity finite element model was setup to simulate the hot bending process, and then, the section deformation mechanism from hot bar by rolling to the end sheet has been investigated from the simulation results. The industry manufacture conditions show that the efficiency and quality has been highly improved by the spiral hot bending process. The thickness variety along the radial direction of the workpiece has also been analyzed, the moment and force during the hot bending was also presented in this paper. These conclusions obtained can guide for the forming technology making for both the end sheet of tubular pile and other ring parts.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 891 ◽  
Author(s):  
Guangsong Ma ◽  
Guanglin He ◽  
Yukuan Liu ◽  
Yachao Guo

To study the influence of the structural parameters of the ammunition liner of small-caliber ammunition on the forming characteristics of the projectile, an integrated circumferential multiple explosively formed projectile (MEFP) warhead with an integrated shell and the liner was initially designed, and the wall thickness of the liner is variable. LS-DYNA finite-element software is used to simulate the integral circumferential MEFP of the preliminary design, based on the numerical simulation results, the influence of the thickness at the center of the liner, and the curvature radius of the liner on the shape and velocity of the formed projectile. The numerical simulation results show that when the thickness of the center of the liner is constant and the curvature radius increases gradually, the velocity of the formed projectile decreases and the length: Diameter ratio of formed projectile decreases gradually. When the curvature radius of the liner remains unchanged, the velocity of the formed projectile decreases with the increase of the thickness of the center of the liner, and the shape of the formed projectile does not change significantly. The results show that when the design of integrating the shell and the liner was adopted for the integral circumferential MEFP warhead, the shape of the formed projectile is greatly affected by the curvature radius of the liner (curvature radius of inner and outer walls of the liner), but less by the thickness of the center of the liner. The velocity of the formed projectile is affected by the curvature radius of the inner and outer walls of the liner and the thickness of the center of the liner. Moreover, the influence of the thickness of the center of the liner on the velocity of the formed projectile is greater than that of the curvature radius of the outer wall of the liner.


Author(s):  
Olaniyi A. Balogun ◽  
Changki Mo ◽  
A. K. Mazher ◽  
John C. Brigham

This paper presents three-dimensional numerical simulation of thermomechanical constitutive model for shape memory polymers. Shape memory polymers (SMPs) are a class of smart materials with high potential for application to automotive, aerostructures, and medical devices, which can benefit from its intrinsic shape changing properties. In particular, looking at its application to aerospace substructure such as morphing wings, thermomechanical behavior of the SMPs needs to be well established and predicted. In order to predict the thermomechanical behavior of SMPs structures, a one-dimensional rheological thermomechanical constitutive model was adopted and a numerical simulation of this model was developed using a commercial finite element analysis package ABAQUS. The particular one-dimensional model was selected due to its potential to represent the key material behaviors of SMP with a relatively low number of required material constants, which is practical for engineering industrial applications. The model was expanded to a three-dimensional isotropic model and then incorporated into the finite element method by means of an ABAQUS user-defined subroutine (UMAT). The methods of three-dimensional expansion and numerical implementation are presented in this work. A time evolution of the analysis was conducted by making use of the backward difference method, which was applied to all quantities within the model including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermomechanical properties of the material, which include shape fixity, shape recovery, and recovery stress. Finally, a preliminary set of predictions for an unmanned aerial vehicle (UAV) morphing wing skin are also presented.


2011 ◽  
Vol 337 ◽  
pp. 270-273 ◽  
Author(s):  
Yang Jiang ◽  
Bao Yu Wang ◽  
Zheng Huan Hu ◽  
Jian Guo Lin

The paper investigates a process of cross wedged rolling (CWR) for manufacturing thick-walled hollow axles. A finite element numerical model coupled deformation and heat transfer of CWR is established using commercial finite element software DEFORM-3D. The rolling process of hollow axle during CWR is simulated successfully. The stress, strain and temperature distributions of workpiece are obtained and analyzed. The simulation results show that forming thick-walled hollow axles through CWR is feasible.


2013 ◽  
Vol 473 ◽  
pp. 121-124 ◽  
Author(s):  
Ning Yao

Springback is a problem that must be solved in multi-point forming in this paper, finite element software ls-dyna was used to simulate plate stamping springback. 3mm thick elastic cushion inhibited dimple of sheet forming, but the use of elastic cushion and plate springback would lead to shape error. A method was proposed which modified the forming surface of element group in the Multi-point forming (MPF) by iterative ways according to the numerical simulation results. The accuracy of forming was improved after two compensation, it was proved that this method can compensate springback of the multi-point forming.


Author(s):  
Kshama Sundar Roy ◽  
Bipul Hawlader

This paper investigates the soil restraint against lateral and oblique motion of pipes buried in dense sand. A series of two- and three-dimensional finite element analyses are performed for pure lateral and combined axial-lateral relative pipeline/soil displacement. The commercially available finite element software package ABAQUS/Standard is used in numerical analysis. The analyses are performed for two burial depths. The numerical model is verified by comparing with model test results available in the literature. The built-in Mohr-Coulomb model in ABAQUS is used for modeling the soil. It is shown that an advanced soil constitutive model might be required for better modeling of pipe/soil interaction behavior.


Sign in / Sign up

Export Citation Format

Share Document