scholarly journals Correlation of Impaired NF-kB Activation in Sepsis-Induced Acute Lung Injury (ALI) in Diabetic Rats

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xiaoying Chen ◽  
Zhangping Sun ◽  
Huanran Zhang ◽  
Lei Wang

Background. The allergic lung inflammation is reduced in the diabetic rats which can be restored by treating it with insulin. As observed in multiple studies, the diabetic patients are more vulnerable to infections and their inflammatory reactions. There are confirmations on insulin and its effects control the inflammatory reactions. Objective. This study was performed to understand the correlation of impaired NF-kB activation in sepsis-induced acute lung injury (ALI) in diabetic rats. Material and Methods. Streptozotocin was used for induction of diabetes and sepsis was induced by colon ligation puncture surgery. Post 6 hours of CLP, the lungs in the groups were analyzed for cell infiltration using broncho-alveolar lavage. The lungs were removed for histopathological analysis at the end of study where the bronchioles, alveoli, and edema were analyzed and compared. Cell expressions quantified by the help of antibodies and inflammatory events were analyzed. Results. Diabetic rats developed mild acute lung injury due to the suppression of activation of NF-kB in alveolar macrophages. Conclusion. Even the diabetic rats were more susceptible to sepsis in comparison to the nondiabetic rats, but the NF-kB suppression has a major role to play in the faint symptoms of ALI.


2016 ◽  
Vol 311 (2) ◽  
pp. L494-L506 ◽  
Author(s):  
Wen Wang ◽  
Zhi Liu ◽  
Jie Su ◽  
Wen-Sheng Chen ◽  
Xiao-Wu Wang ◽  
...  

Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3′-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.



2012 ◽  
Vol 117 (6) ◽  
pp. 1322-1334 ◽  
Author(s):  
Aline M. Ambrosio ◽  
Rubin Luo ◽  
Denise T. Fantoni ◽  
Claudia Gutierres ◽  
Qin Lu ◽  
...  

Background In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.



2018 ◽  
Vol 233 (9) ◽  
pp. 6615-6631 ◽  
Author(s):  
Wang Xie ◽  
Qingchun Lu ◽  
Kailing Wang ◽  
Jingjing Lu ◽  
Xia Gu ◽  
...  


2021 ◽  
Vol 22 (11) ◽  
pp. 5533
Author(s):  
Alessio Filippo Peritore ◽  
Ramona D’Amico ◽  
Rosalba Siracusa ◽  
Marika Cordaro ◽  
Roberta Fusco ◽  
...  

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.



2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Huaizheng Liu ◽  
Kefu Zhou ◽  
Liangkan Liao ◽  
Tianyi Zhang ◽  
Mingshi Yang ◽  
...  


2019 ◽  
Vol 11 (16) ◽  
pp. 2081-2094 ◽  
Author(s):  
Tingting Guo ◽  
Zhenzhong Su ◽  
Qi Wang ◽  
Wei Hou ◽  
Junyao Li ◽  
...  

Aim: Thus far, the anti-inflammatory effect of vanillin in acute lung injury (ALI) has not been studied. This study aimed to investigate the effect of vanillin in lipopolysaccharide (LPS)-induced ALI. Results & methodology: Our study detected the anti-inflammatory effects of vanillin by ELISA and western blot, respectively. Pretreatment of mice with vanillin significantly attenuated LPS-stimulated lung histopathological changes, myeloperoxidase activity and expression levels of proinflammatory cytokines by inhibiting the phosphorylation activities of ERK1/2, p38, AKT and NF-κB p65. In addition, vanillin inhibited LPS-induced TNF-α and IL-6 expression in RAW264.7 cells via ERK1/2, p38 and NF-κB signaling. Conclusion: Vanillin can inhibit macrophage activation and lung inflammation, which suggests new insights for clinical treatment of ALI.



2005 ◽  
Vol 31 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Yoshizumi Takemura ◽  
Yoshinobu Iwasaki ◽  
Kazuhiro Nagata ◽  
Ichiro Yokomura ◽  
Sou Tando ◽  
...  


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunguang Yan ◽  
Jing Chen ◽  
Yue Ding ◽  
Zetian Zhou ◽  
Bingyu Li ◽  
...  

BackgroundThe ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR) γ plays crucial roles in diverse biological processes including cellular metabolism, differentiation, development, and immune response. However, during IgG immune complex (IgG-IC)-induced acute lung inflammation, its expression and function in the pulmonary tissue remains unknown.ObjectivesThe study is designed to determine the effect of PPARγ on IgG-IC-triggered acute lung inflammation, and the underlying mechanisms, which might provide theoretical basis for therapy of acute lung inflammation.SettingDepartment of Pathogenic Biology and Immunology, Medical School of Southeast UniversitySubjectsMice with down-regulated/up-regulated PPARγ activity or down-regulation of Early growth response protein 1 (Egr-1) expression, and the corresponding controls.InterventionsAcute lung inflammation is induced in the mice by airway deposition of IgG-IC. Activation of PPARγ is achieved by using its agonist Rosiglitazone or adenoviral vectors that could mediate overexpression of PPARγ. PPARγ activity is suppressed by application of its antagonist GW9662 or shRNA. Egr-1 expression is down-regulated by using the gene specific shRNA.Measures and Main ResultsWe find that during IgG-IC-induced acute lung inflammation, PPARγ expression at both RNA and protein levels is repressed, which is consistent with the results obtained from macrophages treated with IgG-IC. Furthermore, both in vivo and in vitro data show that PPARγ activation reduces IgG-IC-mediated pro-inflammatory mediators’ production, thereby alleviating lung injury. In terms of mechanism, we observe that the generation of Egr-1 elicited by IgG-IC is inhibited by PPARγ. As an important transcription factor, Egr-1 transcription is substantially increased by IgG-IC in both in vivo and in vitro studies, leading to augmented protein expression, thus amplifying IgG-IC-triggered expressions of inflammatory factors via association with their promoters.ConclusionDuring IgG-IC-stimulated acute lung inflammation, PPARγ activation can relieve the inflammatory response by suppressing the expression of its downstream target Egr-1 that directly binds to the promoter regions of several inflammation-associated genes. Therefore, regulation of PPARγ-Egr-1-pro-inflammatory mediators axis by PPARγ agonist Rosiglitazone may represent a novel strategy for blockade of acute lung injury.



Sign in / Sign up

Export Citation Format

Share Document