scholarly journals Effect of the Reinforcement Phase on Indentation Resistance and Damage Characterization of Glass/Epoxy Laminates Using Acoustic Emission Monitoring

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
C. Suresh Kumar ◽  
K. Saravanakumar ◽  
P. Prathap ◽  
M. Prince ◽  
G. Bharathiraja ◽  
...  

The effect of reinforcement phases on indentation resistance and damage behavior of glass/epoxy laminates was investigated in this research work. Woven glass fiber mat and nonwoven chopped glass fiber mat were used as fiber reinforcement phases for fabricating the laminates. Low-velocity impact and quasi-static indentation tests were performed on both laminates to investigate the contact behavior and energy-absorbing capability. Moreover, the acoustic emission (AE) technique was employed to monitor the indentation damage resistance. AE parameters including normalized cumulative counts (NCC), normalized cumulative energy (NCE), rise angle (RA), and felicity ratio (FR) were analyzed. The bidirectional laminates showed premature load drops and drastic changes in the normalized cumulative counts/energy profile in the beginning of loading cycles, indicating the development of macrodamage such as debonding/delamination. AE sentry function results of bidirectional laminates show longer PII function at the earlier stages, associated with minor PIII function and greater PIV function, indicating the continuous degradation and progression of damage. In contrast, the chopped laminates exhibited superior postimpact performance than the bidirectional laminates. The presence of randomly oriented fibres prevents the delamination crack propagation during compression loading, which was attributed with the increased residual compressive strength.

2012 ◽  
Vol 488-489 ◽  
pp. 501-505
Author(s):  
Zafarullah Khan

In recent years, for the purpose of achieving enhanced mechanical properties of fiber reinforced composites, hybridized composites containing a combination of two or more types of fiber reinforcements have been explored. Perhaps the main parameter which controls the mechanical properties of the hybrid composites is the flexibility to arrange the hybrid fiber reinforcement layers in a variety of ways within the hybrid laminate. In this study, low velocity drop weight impact resistance of plain weave woven glass and carbon hybrid composites has been investigated. The study explores the effects of intra-ply arrangement sequence on the impact resistance of 24 and 32 ply laminates in which glass and the carbon plies have been differently stacked. The results show that impact resistance of woven glass fiber composites can be enhanced by hybridizing woven glass fabrics with woven carbon fabrics. The results indicate that the impact resistance is a function of the positions of the glass and carbon layers in the hybridized inter ply laminates.


2019 ◽  
Vol 84 ◽  
pp. 995-1010 ◽  
Author(s):  
Lijun Li ◽  
Lingyu Sun ◽  
Taikun Wang ◽  
Ning Kang ◽  
Wan Cao

2020 ◽  
Vol 41 (6) ◽  
pp. 2181-2197 ◽  
Author(s):  
Carlos Rubio‐González ◽  
Eduardo José‐Trujillo ◽  
Julio A. Rodríguez‐González ◽  
Alexandre Mornas ◽  
Abderrahim Talha

2020 ◽  
Vol 54 (27) ◽  
pp. 4231-4239
Author(s):  
Vishal Gavande ◽  
Anoop Anand

Continuous glass fiber reinforced thermoplastic composites have been manufactured and their mechanical properties have been evaluated. A catalyzed monomer is infused through a stack of compacted dry reinforcement under vacuum. The monomer undergoes radical polymerization with a peroxide catalyst. Viscosity and reactivity profile have been characterized to determine the catalyst concentration and temperature of infusion. Glass fiber reinforced thermoplastic composites realized through this method have mechanical properties that are comparable with that of epoxy with an added advantage of excellent toughness and repairability. For example, the residual compressive strength of thermoplastic composites after low-velocity impact is found to be over 140% more than that of epoxy-based composites using the same reinforcement and realized under identical manufacturing methods.


Sign in / Sign up

Export Citation Format

Share Document