scholarly journals The In Vitro Adsorption Ability of Lactobacillus acidophilus NCFM to Benzo(a)pyrene in PM2.5

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lili Fu ◽  
Yan Ning ◽  
Hongfei Zhao ◽  
Junfeng Fan ◽  
Bolin Zhang

The objective of this work was to explore the ability of lactic acid bacteria strains to bind benzo(a)pyrene (B(a)P) existing in PM2.5. In this study, we examined the ability of Lactobacillus acidophilus NCFM to bind B(a)P in the simulated PM2.5 environment. Among the tested 5 strains, Lactobacillus acidophilus NCFM exhibited the best capacity to bind B(a)P, and its B(a)P binding percentage was 60.00%. Simulations of organic and inorganic systems which represent PM2.5 indicated that B(a)P could be absorbed by strain L. acidophilus NCFM. For the inorganic system of pH 5, L. acidophilus NCFM bound 92.74% B(a)P with a cell concentration of 1 × 1010 cfu/mL at 37°C for 8 hr. Regarding the organic system with pH 6, 73.00% B(a)P was bound by strain L. acidophilus NCFM after this bacterium was incubated at 37°C for 10 min. A quick B(a)P binding by this probiotic bacterium took place in the organic system. The removal of B(a)P from PM2.5 was significantly related to incubation time, cultivation temperature, pH, and cell concentration. Thus, our finding shows that long-term consumption of L. acidophilus NCFM is beneficial for the reduction of B(a)P towards the population who are exposed to PM2.5, although the ability of this bacterium to adsorb B(a)P is partly affected by the differences in the origin of PM2.5.

1970 ◽  
Vol 56 (3) ◽  
pp. 137-148 ◽  
Author(s):  
Rosella Silvestrini ◽  
Carmela Gambarucci ◽  
Teresa Dasdia

Adriamycin is an antibiotic, isolated from cultures of a mutant of Streptomyces peucetius, var. caesius, with a chemical structure very similar to daunomycin but with a higher therapeutic index in experimental tumors. The biological activity of this antibiotic has been studied in vitro on the HeLa cell strain. Adriamycin quickly penetrates into the cells and fixes to the nuclear structures with a marked localization at the level of the perinucleolar chromatin. It causes a marked and immediate disturbance of the mitotic process, viz. pre-prophasic inhibition at the low doses and mitotic block at the higher doses. Even the synthesis of DNA and RNA, evaluated autoradiographically as incorporation of 3H-thymidine and 3H-uridine, appear markedly inhibited. The viability of the cells, tested both as regards capacity to give rise to colonies and as regards proliferative activity of a cell population, was seriously reduced, in a degree proportional to the period of treatment and to the concentration of the antibiotic, until total inhibition. In comparison with daunomycin, adriamycin exerts an immediate antimitotic and anti-metabolic effect which, at equivalent doses, is slightly lower than that of daunomycin. The long-term antiproliferative activity on cellular proliferation is however, identical for the two antibiotics.


1998 ◽  
Vol 188 (8) ◽  
pp. 1485-1492 ◽  
Author(s):  
Damo Xu ◽  
Woon Ling Chan ◽  
Bernard P. Leung ◽  
David Hunter ◽  
Kerstin Schulz ◽  
...  
Keyword(s):  
T Helper ◽  
Th2 Cell ◽  
A Cell ◽  

Interleukin (IL)-18 induces interferon (IFN)-γ synthesis and synergizes with IL-12 in T helper type 1 (Th1) but not Th2 cell development. We report here that IL-18 receptor (IL-18R) is selectively expressed on murine Th1 but not Th2 cells. IL-18R mRNA was expressed constitutively and consistently in long-term cultured clones, as well as on newly polarized Th1 but not Th2 cells. IL-18 sustained the expression of IL-12Rβ2 mRNA, indicating that IL-18R transmits signals that maintain Th1 development through the IL-12R complex. In turn, IL-12 upregulated IL-18R mRNA. Antibody against an IL-18R–derived peptide bound Th1 but not Th2 clones. It also labeled polarized Th1 but not Th2 cells derived from naive ovalbumin–T cell antigen receptor-αβ transgenic mice (D011.10). Anti–IL-18R antibody inhibited IL-18– induced IFN-γ production by Th1 clones in vitro. In vivo, anti–IL-18R antibody reduced local inflammation and lipopolysaccharide-induced mortality in mice. This was accompanied by shifting the balance from Th1 to Th2 responses, manifest as decreased IFN-γ and proinflammatory cytokine production and increased IL-4 and IL-5 synthesis. Therefore, these data provide a direct mechanism for the selective effect of IL-18 on Th1 but not Th2 cells. They also show that the synergistic effect of IL-12 and IL-18 on Th1 development may be due to the reciprocal upregulation of their receptors. Furthermore, IL-18R is a cell surface marker distinguishing Th1 from Th2 cells and may be a therapeutic target.


2015 ◽  
Vol 8 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Tatiana Mančušková ◽  
Alžbeta Medved’ová ◽  
Ľubomír Valík

Abstract A strain Lactobacillus acidophilus NCFM Howaru Dophilus is a probiotic bacterium available in dairy products and dietary supplements since 1970s. Its positive health effects have been proved by many studies. This work deals with the examination of NCFM strain’s viability during its storage at stable and unstable temperature in MRS broth and ultra-pasteurized milk. In nutritionally rich environment, Lb. acidophilus NCFM was able to survive and to metabolize the media. The relevant decrease of viable cells was observed in MRS broth about 30 days after inoculation, and in milk after 21 to 45 days at both stable and unstable temperatures, respectively. The average rate of decrease of viable cells was approximately two to three times higher in experiments at unstable temperature (GrMRS,unst = −0.149 log CFU.ml−1.d−1 in MRS broth, Grmilk,unst = 0.030 log CFU.ml−1.d−1 in milk) compared with that at stable temperature (GrMRS,st = −0.079 log CFU.ml−1.d−1 in MRS broth, Grmilk,st = 0.009 log CFU.ml−1.d−1 in milk). In the MRS broth exhausted by overnight cultivation of NCFM strain the decrease of viable cells started practically immediately (Grovernigh,unst = −0.137 log CFU.ml−1.d−1). Maintenance of the culture in milk at stable temperature was proved to be the most appropriate form of its storage.


1973 ◽  
Vol 138 (2) ◽  
pp. 364-372 ◽  
Author(s):  
M. Hatanaka ◽  
R. Klein ◽  
C. W. Long ◽  
R. Gilden

Tumorigenic and nontumorigenic mutants induced by a single 5'-bromodeoxyuridine (BrdU) treatment of a nonproducer (NP) tumorigenic cell line were isolated and characterized. Among the cloned derivatives were examples of virus-free and sarcoma virus-producing cell lines. Oncogenicity did not correlate with production of virus or ease of rescue of the sarcoma genome. All lines, including nononcogenic derivatives, retained the sarcoma genome. Phenotypic reversion of some cell mutants was observed after in vivo inoculation or long term in vitro cultivation. The M-50T cell line, obtained from a tumor induced by M-50 cells, had a sarcoma genome rescuable by direct superinfection; this was only achieved with parental M-50 cells by a cell fusion rescue technique. The M-43-2T cell, obtained from a single small static tumor induced by otherwise nononcogenic M-43-2 cells, shed sarcoma virus and became tumorigenic. M-58-4-48 became tumorigenic after passage 48 of the M-58-4 line, which was originally nontumorigenic. These observations of phenotypic reversion demonstrate that the presence of the sarcoma gene in cells is an essential but not sufficient condition of tumorigenesis.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 655-662
Author(s):  
S Siena ◽  
H Castro-Malaspina ◽  
SC Gulati ◽  
L Lu ◽  
MO Colvin ◽  
...  

We describe the effects of 4-hydroperoxycyclophosphamide (4-HC) on the hematopoietic and stromal elements of human bone marrow. Marrow cells were exposed to 4-HC and then assayed for mixed (CFU-Mix), erythroid (BFU-E), granulomonocytic (CFU-GM), and marrow fibroblast (CFU-F) colony-forming cells and studied in the long-term marrow culture (LTMC) system. The inhibition of colony formation by 4-HC was dose and cell- concentration dependent. The cell most sensitive to 4-HC was CFU-Mix (ID50 31 mumol/L) followed by BFU-E (ID50 41 mumol/L), CFU-GM (ID50 89 mumol/L), and CFU-F (ID50 235 mumol/L). In LTMC, a dose-related inhibition of CFU-GM production was noted. Marrows treated with 300 mumol/L 4-HC were completely depleted of CFU-GM but were able to generate these progenitors in LTMC. Marrow stromal progenitors giving rise to stromal layers in LTMC, although less sensitive to 4-HC cytotoxicity, were damaged by 4-HC also in a dose-related manner. Marrows treated with 4-HC up to 300 mumol/L, gave rise to stromal layers composed of fibroblasts, endothelial cells, adipocytes, and macrophages. Cocultivation experiments with freshly isolated autologous hematopoietic cells showed that stromal layers derived from 4-HC- treated marrows were capable of sustaining the long-term production of CFU-GM as well as controls. In conclusion: (1) Hematopoietic progenitors cells, CFU-Mix, BFU-E, and CFU-GM, are highly sensitive to 4-HC, whereas marrow stromal progenitor cells are relatively resistant. (2) Marrows treated with 300 mumol/L 4-HC that are depleted of CFU-Mix, BFU-E, and CFU-GM can generate CFU-GM in LTMC, suggesting that most primitive hematopoietic stem cells (not represented by CFU-Mix) are spared by 4-HC up to this dose. (3) Consequently, the above colony assays are not suitable tools for predicting pluripotent stem cell survival after 4-HC treatment in vitro.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1369-1369
Author(s):  
Charlotte V. Cox ◽  
Roger S. Evely ◽  
Allison Blair

Abstract Clonality studies of immunoglobulin rearrangements in B cell precursor acute lymphoblastic leukaemia (BCP ALL) has suggested that the disease may arise in cells already committed to the B cell lineage. In contrast, Ph+ ALL, which has a less favourable prognosis, is thought to arise in a more primitive haemopoietic cell. This was confirmed recently by studies that demonstrated only the CD34++/CD38− subfraction from Ph+ cases could engraft NOD/SCID mice. However, more recently there has been an increasing body of evidence to suggest that pre B and common ALL may also arise in a cell with a primitive phenotype. We have previously demonstrated that in childhood BCP ALL, the cells capable of long term proliferation in vitro in suspension culture and in vivo to engraft NOD/SCID mice are CD34+/CD10−, CD19−. We then attempted to further define these ALL progenitor cells by investigating the expression of CD133, the primitive stem cell marker. ALL cells capable of long term proliferation in vitro and NOD/SCID engrafting capacity were derived from the CD133+/CD19− subfraction only. These cells were capable of secondary NOD/SCID repopulation, demonstrating they had self-renewal ability. Here, we have attempted to further characterise these ALL progenitor cells to address the question as to whether BCP ALL arises in a common lymphoid progenitor cell or in a more primitive haemopoietic cell. ALL cells from five patients were sorted for CD133+/CD38+ and CD133+/CD38− populations, the sorted subfractions were analysed by cytogenetics and their functional ability was assessed in the NOD/SCID mouse model. Cytogenetic analyses by FISH revealed that both CD133+/CD38+ and CD133+/CD38− subfractions contained the BCR/ABL and ETV6/RUNX1 gene fusions, which had been detected in the patients at diagnosis, and in 1 case with del 17p, this deletion was also noted in the sorted subfractions. These sorted ALL subfractions and unsorted cells were injected intravenously into sublethally irradiated NOD/SCID mice. Bone marrow was harvested at 8–10 weeks post inoculation and analysed for the presence of human cells by flow cytometry. Engraftment was achieved in every case using 2.5x106–107 unsorted cells (0.1–4.5% CD45+). There was no evidence of human cell engraftment in recipients of the CD133+/CD38+ subfraction. However, in each case, engraftment was observed with the CD133+/CD38− subfraction, 0.6–3.2% CD45+ using as few as 6x102–4x104 cells. Using this sorting strategy, we were able to enrich NOD/SCID leukaemia engrafting cells by at least 4 logs compared to the bulk ALL population. Cytogenetic analyses demonstrated that the engrafted cells had the same karyotype as the patients at diagnosis, confirming engraftment of leukaemic cells. These findings suggest that the leukaemia has arisen in a cell with a primitive phenotype, similar to that described for normal haemopoietic stem cells and adds further support to the evidence for a primitive cell origin for B cell precursor ALL. Studies are ongoing to determine whether these primitive ALL cells have the same IgH rearrangements that are detected in the bulk ALL population at diagnosis. This primitive ALL population may be resistant to current chemotherapeutic strategies that are targeted against generic properties of the malignant blasts and subsequent relapses may arise from these cells. Hence, identification and characterisation of these putative ALL stem cells is essential for the development of more effective therapeutic strategies.


2016 ◽  
Vol 89 (3) ◽  
pp. 327-334 ◽  
Author(s):  
Meda Sandra Orasan ◽  
Iulia Ioana Roman ◽  
Andrei Coneac ◽  
Adriana Muresan ◽  
Remus Ioan Orasan

 Research in the field of reversal hair loss remains a challenging subject.As Minoxidil 2% or 5% and Finasteride are so far the only FDA approved topical treatments for inducing hair regrowth, research is necessary in order to improve therapeutical approach in alopecia. In vitro studies have focused on cultures of a cell type - dermal papilla or organ culture of isolated cell follicles . In vivo research on this topic was performed on mice, rats, hamsters, rabbits, sheep and monkeys, taking into consideration the advantages and disadvantages of each animal model and the depilation options. Further studies are required not only to compare the efficiency of different therapies but more importantly to establish their long term safety.


2010 ◽  
Vol 298 (3) ◽  
pp. G395-G401 ◽  
Author(s):  
Geetu Raheja ◽  
Varsha Singh ◽  
Ke Ma ◽  
Redouane Boumendjel ◽  
Alip Borthakur ◽  
...  

Clinical efficacy of probiotics in treating various forms of diarrhea has been clearly established. However, mechanisms underlying antidiarrheal effects of probiotics are not completely defined. Diarrhea is caused either by decreased absorption or increased secretion of electrolytes and solutes in the intestine. In this regard, the electroneutral absorption of two major electrolytes, Na+ and Cl−, occurs mainly through the coupled operation of Na+/H+ exchangers and Cl−/OH− exchangers. Previous studies from our laboratory have shown that Lactobacillus acidophilus (LA) acutely stimulated Cl−/OH− exchange activity via an increase in the surface levels of the apical anion exchanger SLC26A3 (DRA). However, whether probiotics influence SLC26A3 expression and promoter activity has not been examined. The present studies were, therefore, undertaken to investigate the long-term effects of LA on SLC26A3 expression and promoter activity. Treatment of Caco-2 cells with LA for 6–24 h resulted in a significant increase in Cl−/OH− exchange activity. DRA mRNA levels were also significantly elevated in response to LA treatment starting as early as 8 h. Additionally, the promoter activity of DRA was increased by more than twofold following 8 h LA treatment of Caco-2 cells. Similar to the in vitro studies, in vivo studies using mice gavaged with LA also showed significantly increased DRA mRNA (∼4-fold) and protein expression in the colonic regions as assessed by Western blot analysis and immunofluorescence. In conclusion, increase in DRA promoter activity and expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of LA.


Sign in / Sign up

Export Citation Format

Share Document