scholarly journals HAIR LOSS AND REGENERATION PERFORMED ON ANIMAL MODELS

2016 ◽  
Vol 89 (3) ◽  
pp. 327-334 ◽  
Author(s):  
Meda Sandra Orasan ◽  
Iulia Ioana Roman ◽  
Andrei Coneac ◽  
Adriana Muresan ◽  
Remus Ioan Orasan

 Research in the field of reversal hair loss remains a challenging subject.As Minoxidil 2% or 5% and Finasteride are so far the only FDA approved topical treatments for inducing hair regrowth, research is necessary in order to improve therapeutical approach in alopecia. In vitro studies have focused on cultures of a cell type - dermal papilla or organ culture of isolated cell follicles . In vivo research on this topic was performed on mice, rats, hamsters, rabbits, sheep and monkeys, taking into consideration the advantages and disadvantages of each animal model and the depilation options. Further studies are required not only to compare the efficiency of different therapies but more importantly to establish their long term safety.

1998 ◽  
Vol 188 (8) ◽  
pp. 1485-1492 ◽  
Author(s):  
Damo Xu ◽  
Woon Ling Chan ◽  
Bernard P. Leung ◽  
David Hunter ◽  
Kerstin Schulz ◽  
...  
Keyword(s):  
T Helper ◽  
Th2 Cell ◽  
A Cell ◽  

Interleukin (IL)-18 induces interferon (IFN)-γ synthesis and synergizes with IL-12 in T helper type 1 (Th1) but not Th2 cell development. We report here that IL-18 receptor (IL-18R) is selectively expressed on murine Th1 but not Th2 cells. IL-18R mRNA was expressed constitutively and consistently in long-term cultured clones, as well as on newly polarized Th1 but not Th2 cells. IL-18 sustained the expression of IL-12Rβ2 mRNA, indicating that IL-18R transmits signals that maintain Th1 development through the IL-12R complex. In turn, IL-12 upregulated IL-18R mRNA. Antibody against an IL-18R–derived peptide bound Th1 but not Th2 clones. It also labeled polarized Th1 but not Th2 cells derived from naive ovalbumin–T cell antigen receptor-αβ transgenic mice (D011.10). Anti–IL-18R antibody inhibited IL-18– induced IFN-γ production by Th1 clones in vitro. In vivo, anti–IL-18R antibody reduced local inflammation and lipopolysaccharide-induced mortality in mice. This was accompanied by shifting the balance from Th1 to Th2 responses, manifest as decreased IFN-γ and proinflammatory cytokine production and increased IL-4 and IL-5 synthesis. Therefore, these data provide a direct mechanism for the selective effect of IL-18 on Th1 but not Th2 cells. They also show that the synergistic effect of IL-12 and IL-18 on Th1 development may be due to the reciprocal upregulation of their receptors. Furthermore, IL-18R is a cell surface marker distinguishing Th1 from Th2 cells and may be a therapeutic target.


1973 ◽  
Vol 138 (2) ◽  
pp. 364-372 ◽  
Author(s):  
M. Hatanaka ◽  
R. Klein ◽  
C. W. Long ◽  
R. Gilden

Tumorigenic and nontumorigenic mutants induced by a single 5'-bromodeoxyuridine (BrdU) treatment of a nonproducer (NP) tumorigenic cell line were isolated and characterized. Among the cloned derivatives were examples of virus-free and sarcoma virus-producing cell lines. Oncogenicity did not correlate with production of virus or ease of rescue of the sarcoma genome. All lines, including nononcogenic derivatives, retained the sarcoma genome. Phenotypic reversion of some cell mutants was observed after in vivo inoculation or long term in vitro cultivation. The M-50T cell line, obtained from a tumor induced by M-50 cells, had a sarcoma genome rescuable by direct superinfection; this was only achieved with parental M-50 cells by a cell fusion rescue technique. The M-43-2T cell, obtained from a single small static tumor induced by otherwise nononcogenic M-43-2 cells, shed sarcoma virus and became tumorigenic. M-58-4-48 became tumorigenic after passage 48 of the M-58-4 line, which was originally nontumorigenic. These observations of phenotypic reversion demonstrate that the presence of the sarcoma gene in cells is an essential but not sufficient condition of tumorigenesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pilar Valderrama ◽  
Thomas G. Wilson Jr

Purpose. Peri-implantitis is one of the major causes of implant failure. The detoxification of the implant surface is necessary to obtain reosseointegration. The aim of this review was to summarize in vitro and in vivo studies as well as clinical trials that have evaluated surgical approaches for detoxification of the implant body surfaces.Materials and Methods. A literature search was conducted using MEDLINE (PubMed) from 1966 to 2013. The outcome variables were the ability of the therapeutic method to eliminate the biofilm and endotoxins from the implant surface, the changes in clinical parameters, radiographic bone fill, and histological reosseointegration.Results. From 574 articles found, 76 were analyzed. The findings, advantages, and disadvantages of using mechanical, chemical methods and lasers are discussed.Conclusions. Complete elimination of the biofilms is difficult to achieve. All therapies induce changes of the chemical and physical properties of the implant surface. Partial reosseointegration after detoxification has been reported in animals. Combination protocols for surgical treatment of peri-implantitis in humans have shown some positive clinical and radiographic results, but long-term evaluation to evaluate the validity and reliability of the techniques is needed.


2021 ◽  
Vol 22 (4) ◽  
pp. 2143 ◽  
Author(s):  
Justin J.Y. Tan ◽  
Duc-Viet Nguyen ◽  
John E. Common ◽  
Chunyong Wu ◽  
Paul C.L. Ho ◽  
...  

Hair follicle morphogenesis is heavily dependent on reciprocal, sequential, and epithelial-mesenchymal interaction (EMI) between epidermal stem cells and the specialized cells of the underlying mesenchyme, which aggregate to form the dermal condensate (DC) and will later become the dermal papilla (DP). Similar models were developed with a co-culture of keratinocytes and DP cells. Previous studies have demonstrated that co-culture with keratinocytes maintains the in vivo characteristics of the DP. However, it is often challenging to develop three-dimensional (3D) DP and keratinocyte co-culture models for long term in vitro studies, due to the poor intercellular adherence between keratinocytes. Keratinocytes exhibit exfoliative behavior, and the integrity of the DP and keratinocyte co-cultured spheroids cannot be maintained over prolonged culture. Short durations of culture are unable to sufficiently allow the differentiation and re-programming of the keratinocytes into hair follicular fate by the DP. In this study, we explored a microgel array approach fabricated with two different hydrogel systems. Using poly (ethylene glycol) diacrylate (PEGDA) and gelatin methacrylate (GelMA), we compare their effects on maintaining the integrity of the cultures and their expression of important genes responsible for hair follicle morphogenesis, namely Wnt10A, Wnt10B, and Shh, over prolonged duration. We discovered that low attachment surfaces such as PEGDA result in the exfoliation of keratinocytes and were not suitable for long-term culture. GelMA, on the hand, was able to sustain the integrity of co-cultures and showed higher expression of the morphogens overtime.


1996 ◽  
Vol 24 (6) ◽  
pp. 719-730 ◽  
Author(s):  
Katrin Neubauer ◽  
Thomas Knittel ◽  
Sabine Aurisch ◽  
Peter Fellmer ◽  
Giuliano Ramadori

Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 519-529 ◽  
Author(s):  
Guangwei Liu ◽  
Xuelian Hu ◽  
Bo Sun ◽  
Tao Yang ◽  
Jianfeng Shi ◽  
...  

Abstract Neutrophils are critically involved in host defense and tissue damage. Intrinsic molecular mechanisms controlling neutrophil differentiation and activities are poorly defined. Herein we found that p53-induced phosphatase 1(Wip1) is preferentially expressed in neutrophils among immune cells. The Wip1 expression is gradually up-regulated during the differentiation of myeloid precursors into mature neutrophils. Wip1-deficient mice and chimera mice with Wip1−/− hematopoietic cells had an expanded pool of neutrophils with hypermature phenotypes in the periphery. The in vivo and in vitro studies showed that Wip1 deficiency mainly impaired the developing process of myeloid progenitors to neutrophils in an intrinsic manner. Mechanism studies showed that the enhanced development and maturation of neutrophils caused by Wip1 deficiency were mediated by p38 MAPK-STAT1 but not p53-dependent pathways. Thus, our findings identify a previously unrecognized p53-independent function of Wip1 as a cell type-specific negative regulator of neutrophil generation and homeostasis through limiting the p38 MAPK-STAT1 pathway.


2020 ◽  
Vol 8 (11) ◽  
pp. 324-332 ◽  
Author(s):  
Abraham A. Embi

One mechanism of action of antibiotics such as tetracyclines involves the disruption of pathogens cell membranes. This author had previously demonstrated in vitro and in vivo the utility of a human miniorgan, a.k.a. hair follicle as sentinel in demonstrating the deleterious effect of alcohol by showing a disruption in metabolism. In this manuscript, the hair follicle was again used in vitro as sentinel in direct contact with another exogenous substance in two forms, namely liquid and powder tetracycline. The results demonstrate the adhesion property of tetracycline as a mechanism causing deleterious effect on the biological active cells of the follicle’s dermal papilla, and the consequent disruption in metabolism. Notably, it was documented a strong affinity of the antibiotic to the keratin skeleton of the hair follicle. In a recent published report, the adverse effect of tetracycline induction on experimentally deficient mitochondrial DNA (mtDNA) mouse was reversed and documented 30 days after discontinuation of the tetracycline diet. The experiments herein presented correlate and confirm previous findings of long term exposure to tetracycline causing not only damage the pathogen; but also healthy human cells. Since mtDNA may play a role in aging and age-associated diseases: Beware of tetracycline therapy on the elderly.


Author(s):  
Alborz Karimzadeh ◽  
Erika S. Varady ◽  
Vanessa M. Scarfone ◽  
Connie Chao ◽  
Karin Grathwohl ◽  
...  

Hematopoietic stem cells (HSCs) are defined by their self-renewal, multipotency, and bone marrow (BM) engraftment abilities. How HSCs emerge during embryonic development remains unclear, but are thought to arise from hemogenic endothelium through an intermediate precursor called “pre-HSCs.” Pre-HSCs have self-renewal and multipotent activity, but lack BM engraftability. They can be identified functionally by transplantation into neonatal recipients, or by in vitro co-culture with cytokines and stroma followed by transplantation into adult recipients. While pre-HSCs express markers such as Kit and CD144, a precise surface marker identity for pre-HSCs has remained elusive due to the fluctuating expression of common HSC markers during embryonic development. We have previously determined that the lack of CD11a expression distinguishes HSCs in adults as well as multipotent progenitors in the embryo. Here, we use a neonatal transplantation assay to identify pre-HSC populations in the mouse embryo. We establish CD11a as a critical marker for the identification and enrichment of pre-HSCs in day 10.5 and 11.5 mouse embryos. Our proposed pre-HSC population, termed “11a- eKLS” (CD11a- Ter119- CD43+ Kit+ Sca1+ CD144+), contains all in vivo long-term engrafting embryonic progenitors. This population also displays a cell-cycle status expected of embryonic HSC precursors. Furthermore, we identify the neonatal liver as the likely source of signals that can mature pre-HSCs into BM-engraftable HSCs.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Hoda Ahmed Moneib ◽  
Ghada Fathy Mohamed ◽  
Naglaa Samir Ahmed ◽  
Mahy El-Bassiouny El-Sayed Abou-Noor

Abstract Background Cellular and cell-derived components of adipose-derived tissue for the purposes of dermatologic and aesthetic rejuvenation applications have become increasingly studied and integrated into clinical practice. The hair follicle goes through phases of growth, regression, and quiescence, and it is suspected that adipocytes secrete factors to promote activation of hair follicles dermal papilla cells, increasing migration, and proliferation in vitro; as well as increasing conversion of hair follicles from the telogen to anagen phase in vivo. Objectives Evaluation of efficacy and safety of adipose-derived adult stem cells (ADSCs) injection in hair follicle regeneration in female pattern hair loss (FPHL). Methods 33 patients were included and divided into 3 groups according to Sinclair’s classification according to severity. ADSCs were extracted from lipoaspirate and injected into the frontoparietal scalp. Patients were assessed clinically, trichoscopically and immunohistochemically. Results At week 24, there was improvement of hair thickness and count, both in frontal and occipital areas. Histopathological and immunohistochemical assessment at week 12 showed decrease of perifollicular inflammation and decrease of DKK-1 immunostaining. Conclusion The use of ADSCs in treatment of FPHL in subjects included in this study showed improvement of perifollicular inflammation, in addition to density and thickness of hair.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Sign in / Sign up

Export Citation Format

Share Document