scholarly journals Probabilistic Model-Based Malaria Disease Recognition System

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rahila Parveen ◽  
Wei Song ◽  
Baozhi Qiu ◽  
Mairaj Nabi Bhatti ◽  
Tallal Hassan ◽  
...  

In this paper, we present a probabilistic-based method to predict malaria disease at an early stage. Malaria is a very dangerous disease that creates a lot of health problems. Therefore, there is a need for a system that helps us to recognize this disease at early stages through the visual symptoms and from the environmental data. In this paper, we proposed a Bayesian network (BN) model to predict the occurrences of malaria disease. The proposed BN model is built on different attributes of the patient’s symptoms and environmental data which are divided into training and testing parts. Our proposed BN model when evaluated on the collected dataset found promising results with an accuracy of 81%. One the other hand, F1 score is also a good evaluation of these probabilistic models because there is a huge variation in class data. The complexity of these models is very high due to the increase of parent nodes in the given influence diagram, and the conditional probability table (CPT) also becomes more complex.

1994 ◽  
Vol 29 (7) ◽  
pp. 327-333
Author(s):  
Y. Matsui ◽  
F. Yamaguchi ◽  
Y. Suwa ◽  
Y. Urushigawa

Activated sludges were acclimated to p-nitrophenol (PNP) in two operational modes, a batch and a continuous. The operational mode of the PNP acclimation of activated sludges strongly affected the physiological characteristics of predominant microorganisms responsible for PNP degradation. Predominant PNP degraders in the sludge in batch mode (Sludge B) had lower PNP affinity and were relatively insensitive to PNP concentration. Those of the sludge in continuous mode (Sludge C), on the other hand, had very high PNP affinity and were sensitive to PNP. MPN enumeration of PNP degraders in sludge B and C using media with different PNP concentrations (0.05, 0.2,0.5 and 2.0 mM) supported the above results. Medium with 0.2 mM of PNP did not recover PNP degraders in sludge C well, while it recovered PNP degraders in sludge B as well as the medium with 0.05 mM did. When switching from one operational mode to the other, the predominant population in sludge B shifted to the sensitive group, but that of sludge C did not shift at the given loading of PNP, showing relative resistance to inhibitive concentration.


2021 ◽  
Vol 13 (8) ◽  
pp. 4096
Author(s):  
Jozefína Pokrývková ◽  
Ľuboš Jurík ◽  
Lenka Lackóová ◽  
Klaudia Halászová ◽  
Richard Hanzlík ◽  
...  

The water management of cities and villages faces many challenges. Aging infrastructure systems operate for many years after their theoretical lifetime (operation) with a very high need for reconstruction and repair. The solution is proper rainwater management. The investigated area is part of the cadastral area of the Nitra city. This article is based on the use of geographic information systems (GIS) as tools in proposing water retention measures that are needed to improve the microenvironment of the city. We proceeded in several steps, which consisted of area analysis, survey, surface runoff calculations in urbanized areas, proposal of a suitable solution for given location. For real possibilities of rainwater management procedures, a new site on the outskirts of the city was selected. In the given locality, it was possible to use water infiltration as a solution. The locality has suitable conditions of land ownership, pedological conditions, the slope of the area and also the interest of the inhabitants in the ecological solution. The outlined study indicates the need to continue research on the reliability of rainwater management practices.


2013 ◽  
Vol 38 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Jean-Nicolas Pradervand ◽  
Anne Dubuis ◽  
Loïc Pellissier ◽  
Antoine Guisan ◽  
Christophe Randin

Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species’ micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions – and therefore local management – compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.


2014 ◽  
Vol 543-547 ◽  
pp. 2209-2212
Author(s):  
Chun Hua Xiong ◽  
You Jie Zhou ◽  
Gao Jun An ◽  
Chang Bo Lu

Based on the existing contour tracing image recognition technology, combining the embedded system technology and the computer storage control technology, the author makes an integrated design, adopts the image processing chip, USB controller, the imaging sensor and other hardware circuits and develops an intelligent image system. The system can make real-time monitoring the size and change of millimeter-sized irregular target objects. Its applicable value in the fields such as intelligent monitoring of oil equipment, medical imaging and criminal investigation is very high.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
E. Adlaoui ◽  
C. Faraj ◽  
M. El Bouhmi ◽  
A. El Aboudi ◽  
S. Ouahabi ◽  
...  

Malaria resurgence risk in Morocco depends, among other factors, on environmental changes as well as the introduction of parasite carriers. The aim of this paper is to analyze the receptivity of the Loukkos area, large wetlands in Northern Morocco, to quantify and to map malaria transmission risk in this region using biological and environmental data. This risk was assessed on entomological risk basis and was mapped using environmental markers derived from satellite imagery. Maps showing spatial and temporal variations of entomological risk for Plasmodium vivax and P. falciparum were produced. Results showed this risk to be highly seasonal and much higher in rice fields than in swamps. This risk is lower for Afrotropical P. falciparum strains because of the low infectivity of Anopheles labranchiae, principal malaria vector in Morocco. However, it is very high for P. vivax mainly during summer corresponding to the rice cultivation period. Although the entomological risk is high in Loukkos region, malaria resurgence risk remains very low, because of the low vulnerability of the area.


Author(s):  
Lucas Terres de Lima ◽  
Sandra Fernández-Fernández ◽  
João Francisco Gonçalves ◽  
Luiz Magalhães Filho ◽  
Cristina Bernardes

Sea-level rise is a problem increasingly affecting coastal areas worldwide. The existence 15 of Free and Open-Source Models to estimate the sea-level impact can contribute to better coastal 16 management. This study aims to develop and to validate two different models to predict the 17 sea-level rise impact supported by Google Earth Engine (GEE) – a cloud-based platform for plan-18 etary-scale environmental data analysis. The first model is a Bathtub Model based on the uncer-19 tainty of projections of the Sea-level Rise Impact Module of TerrSet - Geospatial Monitoring and 20 Modeling System software. The validation process performed in the Rio Grande do Sul coastal 21 plain (S Brazil) resulted in correlations from 0.75 to 1.00. The second model uses Bruun Rule for-22 mula implemented in GEE and is capable to determine the coastline retreat of a profile through the 23 creation of a simple vector line from topo-bathymetric data. The model shows a very high correla-24 tion (0.97) with a classical Bruun Rule study performed in Aveiro coast (NW Portugal). The GEE 25 platform seems to be an important tool for coastal management. The models developed have been 26 openly shared, enabling the continuous improvement of the code by the scientific community.


Author(s):  
Chetan M. Jadhav ◽  
V. K. Bairagi

<p>The term Arrhythmia refers to any change from the normal sequence in the electrical impulses. It is also treated as abnormal heart rhythms or irregular heartbeats. The rate of growth of Cardiac Arrhythmia disease is very high &amp; its effects can be observed in any age group in society. Arrhythmia detection can be done in many ways but effective &amp; simple method for detection &amp; diagnosis of  Cardiac Arrhythmia is by doing analysis of Electrocardiogram signals from ECG sensors. ECG signal can give us the detail information of heart activities, so we can use ECG signals to detect the rhythm &amp; behaviour of heart beats resulting into detection &amp; diagnosis of Cardiac Arrhythmia. In this paper new &amp; improved methodology for early Detection &amp; Classification of Cardiac Arrhythmia has been proposed. In this paper ECG signals are captured using ECG sensors &amp; this ECG signals are used &amp; processed to get the required data regarding heart beats of the human being &amp; then proposed methodology applies for Detection &amp; Classification of Cardiac Arrhythmia. Detection of Cardiac Arrhythmia using ECG signals allows us for easy &amp; reliable way with low cost solution to diagnose Arrhythmia in its prior early stage.</p>


2019 ◽  
Vol 11 (11) ◽  
pp. 1259 ◽  
Author(s):  
Eike Jens Hoffmann ◽  
Yuanyuan Wang ◽  
Martin Werner ◽  
Jian Kang ◽  
Xiao Xiang Zhu

This article addresses the question of mapping building functions jointly using both aerial and street view images via deep learning techniques. One of the central challenges here is determining a data fusion strategy that can cope with heterogeneous image modalities. We demonstrate that geometric combinations of the features of such two types of images, especially in an early stage of the convolutional layers, often lead to a destructive effect due to the spatial misalignment of the features. Therefore, we address this problem through a decision-level fusion of a diverse ensemble of models trained from each image type independently. In this way, the significant differences in appearance of aerial and street view images are taken into account. Compared to the common multi-stream end-to-end fusion approaches proposed in the literature, we are able to increase the precision scores from 68% to 76%. Another challenge is that sophisticated classification schemes needed for real applications are highly overlapping and not very well defined without sharp boundaries. As a consequence, classification using machine learning becomes significantly harder. In this work, we choose a highly compact classification scheme with four classes, commercial, residential, public, and industrial because such a classification has a very high value to urban geography being correlated with socio-demographic parameters such as population density and income.


1963 ◽  
Vol 17 (2) ◽  
pp. 205-211
Author(s):  
T. J. Blachut

In spite of the lack of extensive experimental data at this, in a sense, early stage of development, some very interesting indications of the eventual performance of the Analytical Plotter can be seen. The accuracy of the measuring system is very high; monocular grid measurements gave mean square errors of 2.5 - 3.5 μ. The stability is even better, repetition of readings being constant within 2 to 3 μ, that is, within the pointing accuracy. The accuracy of the complete system may be improved by using experimental corrections and proper statistical treatment of redundant observations. Complete relative and absolute orientations can be carried out in 10 to 15 minutes or less with analytical accuracy. Further economical advantages result from the use of the inherent computer capabilities to solve auxiliary problems and to carry out pertinent “real time” operations, such as automatic control of the plotting table.


Sign in / Sign up

Export Citation Format

Share Document