scholarly journals The Effect of Suppression Taurine on Relocation and Epithelial-Mesenchymal Transition in Mankind Lung Cancer Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yongyan Deng ◽  
Hongjin Li ◽  
Yujiao Tang

Aim. Taurine is believed to have antioxidant properties and has been implicated in the treatment of neurodegenerative disease, atherosclerosis, coronary heart disease, and prostate cancer. This research focused on taurine inhibition effects of expression related to migration and epithelial-mesenchymal transition- (EMT-) A549 study on related genes of human being non-small-cell lung cancer. Methods. MTT assays assessed cell viability and a RadiusTM assay showed that taurine also inhibited the lung cancer cell migration. Using RT-PCR and Western blot, the migration and EMT markers were identified and evaluated. Results. We found that taurine significantly decreased the expression of migration markers matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor (VEGF). In contrast, TIMP metallopeptidase inhibitor 1 (TIMP-1) and TIMP metallopeptidase inhibitor 2 (TIMP-2) expressions were increased with taurine treatment. In addition, we found an association between taurine treatment and the expression of EMT markers. The expression of epithelial marker E-cadherin and the mesenchymal marker N-cadherin TWIST-1 was decreased, but the expression of zinc finger protein SNAIL-1 and E-zinc finger homeobox 1 (ZEB-1) was increased. Conclusion. Taken together, our study strongly suggests the therapeutic significance of taurine, which possesses antimigration activity and induces EMT markers expression in lung cancer cells.

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1674
Author(s):  
Hyun Ji Kim ◽  
Mi Kyung Park ◽  
Hyun Jung Byun ◽  
Minkyoung Kim ◽  
Boram Kim ◽  
...  

LW1497 suppresses the expression of the hypoxia-inducing factor (HIF)-1α inhibiting malate dehydrogenase. Although hypoxia and HIF-1α are known to be important in cancer, LW1497 has not been therapeutically applied to cancer yet. Thus, we investigated the effect of LW1497 on the epithelial-mesenchymal transition (EMT) of lung cancer cells. A549 and H1299 lung cancer cells were induced to undergo via TGF-β1 treatment, resulting in the downregulation of E-cadherin and upregulation of N-cadherin and Vimentin concurrently with increases in the migration and invasion capacities of the cells. These effects of TGF-β1 were suppressed upon co-treatment of the cells with LW1497. An RNA-seq analysis revealed that LW1497 induced differential expression of genes related to hypoxia, RNA splicing, angiogenesis, cell migration, and metastasis in the A549 lung cancer cell lines. We confirmed the differential expression of Slug, an EMT-related transcription factor. Results from Western blotting and RT-PCR confirmed that LW1497 inhibited the expression of EMT markers and Slug. After orthotopically transplanting A549 cancer cells into mice, LW1497 was administered to examine whether the lung cancer progression was inhibited. We observed that LW1497 reduced the area of cancer. In addition, the results from immunohistochemical analyses showed that LW1497 downregulated EMT markers and Slug. In conclusion, LW1497 suppresses cancer progression through the inhibition of EMT by downregulating Slug.


2018 ◽  
Vol 120 (4) ◽  
pp. 5880-5888 ◽  
Author(s):  
Xiangfeng Jin ◽  
Yi Yu ◽  
Qiang Zou ◽  
Mingzhao Wang ◽  
Yaojie Cui ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 191-202 ◽  
Author(s):  
Bornita Das ◽  
Dona Sinha

DADS reflected the potential of reversal of FN-induced EMT by inhibition of Wnt signaling in A549 lung cancer cells.


Author(s):  
Wei-Zhen Liu ◽  
Nian Liu

Propofol has been widely used in lung cancer resections. Some studies have demonstrated that the effects of propofol might be mediated by microRNAs (miRNAs). This study aimed to investigate the effects and mechanisms of propofol on lung cancer cells by regulation of miR-1284. A549 cells were treated with different concentrations of propofol, while transfected with miR-1284 inhibitor, si-FOXM1, and their negative controls. Cell viability, migration, and invasion, and the expression of miR-1284, FOXM1, and epithelial‐mesenchymal transition (EMT) factors were detected by CCK-8, Transwell, qRT-PCR, and Western blot assays, respectively. In addition, the regulatory and binding relationships among propofol, miR-1284, and FOXM1 were assessed, respectively. Results showed that propofol suppressed A549 cell viability, migration, and invasion, upregulated E-cadherin, and downregulated N-cadherin, vimentin, and Snail expressions. Moreover, propofol significantly promoted the expression of miR-1284. miR-1284 suppression abolished propofol-induced decreases of cell viability, migration, and invasion, and increased FOXM1 expression and the luciferase activity of FOXM1-wt. Further, miR-1284 negatively regulated FOXM1 expression. FOXM1 knockdown reduced cell viability, migration, and invasion by propofol treatment plus miR-1284 suppression. In conclusion, our study indicated that propofol could inhibit cell viability, migration, invasion, and the EMT process in lung cancer cells by regulation of miR-1284.


Sign in / Sign up

Export Citation Format

Share Document