scholarly journals Identification of Arrhythmia by Using a Decision Tree and Gated Network Fusion Model

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Lu ◽  
Yabin Zhang ◽  
Bing Zhou ◽  
Hongpo Zhang ◽  
Liwei Chen ◽  
...  

In recent years, deep learning (DNN) based methods have made leapfrogging level breakthroughs in detecting cardiac arrhythmias as the cost effectiveness of arithmetic power, and data size has broken through the tipping point. However, the inability of these methods to provide a basis for modeling decisions limits clinicians’ confidence on such methods. In this paper, a Gate Recurrent Unit (GRU) and decision tree fusion model, referred to as (T-GRU), was designed to explore the problem of arrhythmia recognition and to improve the credibility of deep learning methods. The fusion model multipathway processing time-frequency domain featured the introduction of decision tree probability analysis of frequency domain features, the regularization of GRU model parameters and weight control to improve the decision tree model output weights. The MIT-BIH arrhythmia database was used for validation. Results showed that the low-frequency band features dominated the model prediction. The fusion model had an accuracy of 98.31%, sensitivity of 96.85%, specificity of 98.81%, and precision of 96.73%, indicating its high reliability and clinical significance.

2019 ◽  
Vol 19 (5) ◽  
pp. 1602-1626 ◽  
Author(s):  
Xiaoan Yan ◽  
Ying Liu ◽  
Minping Jia

Stacked denoising autoencoder is one of the most classic models of deep learning. However, there are two problems in the traditional stacked denoising autoencoder: (1) the parameter selection of stacked denoising autoencoder mainly depends on expert experience and (2) stacked denoising autoencoder is mainly restricted to learn automatically single-domain features from raw vibration signals while identifying the fault type, which implies that no linear mapping relationship located in other domains of vibration data is neglected, which may lead to the imperfect diagnostic results. Consequently, to address these issues, learn the well-rounded feature representation, and improve recognition accuracy, this article presents a novel approach called multi-domain indicator-based optimized stacked denoising autoencoder for automatic fault identification of rolling bearing. First, multi-domain indicator of the original vibration signal is constructed through calculating the expression of different domains (e.g. time frequency domain, and time frequency domain). Second, the constructed multi-domain indicator is regarded as the input dataset to train stacked denoising autoencoder architecture containing three hidden layers, and a recently reported nature-inspired algorithm named grasshopper optimization algorithm is employed to synchronously determine the model parameters of stacked denoising autoencoder, which is aimed at learning more robust and reliable feature representation. Finally, the feature representation learned in the testing set is fed into the trained stacked denoising autoencoder model containing softmax classifier for identifying bearing health conditions. The presented method is evaluated using two bearing vibration datasets. Experimental results indicate that our approach can provide high-accuracy recognition over 99% for bearing health condition, and it achieves more decent and precise classification results compared with some shallow learning model and standard deep learning architecture.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongju Chen ◽  
Shuai Zhou ◽  
Lihua Dong ◽  
Jinwei Fan

This paper presents a new identification method to identify the main errors of the machine tool in time-frequency domain. The low- and high-frequency signals of the workpiece surface are decomposed based on the Daubechies wavelet transform. With power spectral density analysis, the main features of the high-frequency signal corresponding to the imbalance of the spindle system are extracted from the surface topography of the workpiece in the frequency domain. With the cross-correlation analysis method, the relationship between the guideway error of the machine tool and the low-frequency signal of the surface topography is calculated in the time domain.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Hao Chao ◽  
Huilai Zhi ◽  
Liang Dong ◽  
Yongli Liu

Fusing multichannel neurophysiological signals to recognize human emotion states becomes increasingly attractive. The conventional methods ignore the complementarity between time domain characteristics, frequency domain characteristics, and time-frequency characteristics of electroencephalogram (EEG) signals and cannot fully capture the correlation information between different channels. In this paper, an integrated deep learning framework based on improved deep belief networks with glia chains (DBN-GCs) is proposed. In the framework, the member DBN-GCs are employed for extracting intermediate representations of EEG raw features from multiple domains separately, as well as mining interchannel correlation information by glia chains. Then, the higher level features describing time domain characteristics, frequency domain characteristics, and time-frequency characteristics are fused by a discriminative restricted Boltzmann machine (RBM) to implement emotion recognition task. Experiments conducted on the DEAP benchmarking dataset achieve averaged accuracy of 75.92% and 76.83% for arousal and valence states classification, respectively. The results show that the proposed framework outperforms most of the above deep classifiers. Thus, potential of the proposed framework is demonstrated.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiang Ji ◽  
Chen Zhao ◽  
Yongqin Wang ◽  
Tuanmin Zhao ◽  
Xinyou Zhang

To solve the problems of difficult fault signal recognition and poor diagnosis effect of different damage in the same position in rolling mill bearing at low speed, a fault diagnosis method of rolling mill bearing based on integration of EEMD and DBN was proposed. The vibration signals in horizontal, axial, and vertical directions were decomposed and reconstructed by EEMD, and frequency domain analysis was carried out by using refined spectrum. Then, the signal's time-frequency domain index, rolling force, and torque component feature vector were input into genetic algorithm (GA) to optimize DBN model classification. In order to verify the effectiveness of the method, the experimental study was carried out on the two-high experimental rolling mill. The results show that EEMD combined with thinning spectrum can solve the problem of fault feature extraction well. Compared with time-frequency domain characteristic input, the prediction accuracy of DBN model is obviously improved. And the accuracy of GA-DBN model is higher, and the accuracy is 98.3%, and the time taken to diagnose is significantly reduced. Finally, the fault classification of different parts of bearings and the fault diagnosis of different damage in the same part are realized, which provides a good theoretical basis for the fault diagnosis of low-speed bearings and has important engineering significance.


2020 ◽  
Author(s):  
Yusong Hu ◽  
Yantao Zhao ◽  
Jihong Liu ◽  
Jin Pang ◽  
Chen Zhang ◽  
...  

Abstract Background: Atrial fibrillation is a type of persistent arrhythmia that can lead to serious complications. Therefore, accurate and quick detection of atrial fibrillation by surface electrocardiogram has great importance on further treatment. The practical electrocardiogram signals contain various interferences in different frequencies, such as myoelectricity interference, power interference and so on. Detection speed and accuracy largely depend on the atrial fibrillation signal features extracted by the algorithm. But some of the discovered atrial fibrillation features are not well distinguishable, resulting in poor classification effect. Methods: This paper proposed a high distinguishable frequency feature - the frequency corresponding to the maximum amplitude in the frequency spectrum. We used the R-R interval detection method optimized with the mathematical morphology method and combined with the wavelet transform method for analysis. According to the two features - the maximum amplitude in the frequency spectrum and R-R interval irregular, we could recognize atrial fibrillation signals in electrocardiogram signals by decision tree classification algorithm. Results: The data used in the experiment come from the MIT-BIH database, which is publicly accessible via the web and with ethical approval and consent. Based on the input of time-domain and frequency-domain features, we classified sinus rhythm signals and AF signals using the decision tree generated by classification and regression tree (CART) algorithm. From the confusion matrix, we got the accuracy was 98.9%, sensitivity was 97.93% and specificity was 99.63%. Conclusions: The experimental results can prove the validity of the maximum amplitude in the frequency spectrum and the practicability and accuracy of the detection method, which applied this frequency-domain feature. Through the detection method, we obtained good accuracy of classifying sinus rhythm signals and atrial fibrillation signals. And the sensitivity and specificity of our method were pretty good by comparison with other studies.


2020 ◽  
Author(s):  
Yusong Hu ◽  
Yantao Zhao ◽  
Jihong Liu ◽  
Jin Pang ◽  
Chen Zhang ◽  
...  

Abstract Background: Atrial fibrillation is a type of persistent arrhythmia that can lead to serious complications. Therefore, accurate and quick detection of atrial fibrillation by surface electrocardiogram has great importance on further treatment. The practical electrocardiogram signals contain various interferences in different frequencies, such as myoelectricity interference, power interference and so on. Detection speed and accuracy largely depend on the atrial fibrillation signal features extracted by the algorithm. But some of the discovered atrial fibrillation features are not well distinguishable, resulting in poor classification effect. Methods: This paper proposed a high distinguishable frequency feature - the frequency corresponding to the maximum amplitude in the frequency spectrum. We used the R-R interval detection method optimized with the mathematical morphology method and combined with the wavelet transform method for analysis. According to the two features - the maximum amplitude in the frequency spectrum and R-R interval irregular, we could recognize atrial fibrillation signals in electrocardiogram signals by decision tree classification algorithm. Results: The data used in the experiment come from the MIT-BIH database, which is publicly accessible via the web and with ethical approval and consent. Based on the input of time-domain and frequency-domain features, we classified sinus rhythm signals and AF signals using the decision tree generated by classification and regression tree (CART) algorithm. From the confusion matrix, we got the accuracy was 98.9%, sensitivity was 97.93% and specificity was 99.63%. Conclusions: The experimental results can prove the validity of the maximum amplitude in the frequency spectrum and the practicability and accuracy of the detection method, which applied this frequency-domain feature. Through the detection method, we obtained good accuracy of classifying sinus rhythm signals and atrial fibrillation signals. And the sensitivity and specificity of our method were pretty good by comparison with other studies.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yusong Hu ◽  
Yantao Zhao ◽  
Jihong Liu ◽  
Jin Pang ◽  
Chen Zhang ◽  
...  

Abstract Background Atrial fibrillation is a type of persistent arrhythmia that can lead to serious complications. Therefore, accurate and quick detection of atrial fibrillation by surface electrocardiogram has great importance on further treatment. The practical electrocardiogram signals contain various interferences in different frequencies, such as myoelectricity interference, power interference and so on. Detection speed and accuracy largely depend on the atrial fibrillation signal features extracted by the algorithm. But some of the discovered atrial fibrillation features are not well distinguishable, resulting in poor classification effect. Methods This paper proposed a high distinguishable frequency feature—the frequency corresponding to the maximum amplitude in the frequency spectrum. We used the R–R interval detection method optimized with the mathematical morphology method and combined with the wavelet transform method for analysis. According to the two features—the maximum amplitude in the frequency spectrum and R–R interval irregular, we could recognize atrial fibrillation signals in electrocardiogram signals by decision tree classification algorithm. Results The data used in the experiment come from the MIT-BIH database, which is publicly accessible via the web and with ethical approval and consent. Based on the input of time-domain and frequency-domain features, we classified sinus rhythm signals and AF signals using the decision tree generated by classification and regression tree (CART) algorithm. From the confusion matrix, we got the accuracy was 98.9%, sensitivity was 97.93% and specificity was 99.63%. Conclusions The experimental results can prove the validity of the maximum amplitude in the frequency spectrum and the practicability and accuracy of the detection method, which applied this frequency-domain feature. Through the detection method, we obtained good accuracy of classifying sinus rhythm signals and atrial fibrillation signals. And the sensitivity and specificity of our method were pretty good by comparison with other studies.


2020 ◽  
Author(s):  
Yusong Hu ◽  
Yantao Zhao ◽  
Jihong Liu ◽  
Jin Pang ◽  
Chen Zhang ◽  
...  

Abstract Background: Atrial fibrillation is a type of persistent arrhythmia that can lead to serious complications. Therefore, accurate and quick detection of atrial fibrillation by surface electrocardiogram has great importance on further treatment. The practical electrocardiogram signals contain various interferences in different frequencies, such as myoelectricity interference, power interference and so on. Detection speed and accuracy largely depend on the atrial fibrillation signal features extracted by the algorithm. But some of the discovered atrial fibrillation features are not well distinguishable, resulting in poor classification effect. Methods: This paper proposed a high distinguishable frequency feature - the frequency corresponding to the maximum amplitude in the frequency spectrum. We used the R-R interval detection method optimized with the mathematical morphology method and combined with the wavelet transform method for analysis. According to the two features - the maximum amplitude in the frequency spectrum and R-R interval irregular, we could recognize atrial fibrillation signals in electrocardiogram signals by decision tree classification algorithm. Results: The data used in the experiment come from the MIT-BIH database, which is publicly accessible via the web and with ethical approval and consent. Based on the input of time-domain and frequency-domain features, we classified sinus rhythm signals and AF signals using the decision tree generated by classification and regression tree (CART) algorithm. From the confusion matrix, we got the accuracy was 98.9%, sensitivity was 97.93% and specificity was 99.63%. Conclusions: The experimental results can prove the validity of the maximum amplitude in the frequency spectrum and the practicability and accuracy of the detection method, which applied this frequency-domain feature. Through the detection method, we obtained good accuracy of classifying sinus rhythm signals and atrial fibrillation signals. And the sensitivity and specificity of our method were pretty good by comparison with other studies.


Wrist pulse signal has been the traditional way of diagnosing human health in India. It is a low frequency, non-stationary signal. There are broadly three techniques of analyzing a signal – time, frequency and time-frequency domain. The individual time and frequency domain representations of the signal do not provide much information on properties of a non-stationary signal. However, the time-frequency distributions of a non-stationary signal overcome these problems and provide more information about the pulse signal. This paper presents the various time-frequency distribution techniques for analyzing non-stationary wrist pulse signals .


Sign in / Sign up

Export Citation Format

Share Document