scholarly journals Event-Sensitive Network: A Construction Algorithm of Agricultural Sensor Network Driven by Environmental Change

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shipu Xu ◽  
Yong Liu ◽  
WenWen Hu ◽  
Yingjing Wu ◽  
Sijia Liu ◽  
...  

In a wireless sensor network, the sensor nodes transmit the acquired information to the server through the data transmission link. On the serverside, the data are processed, fused, and expressed to serve the user. Sensor deployment is a key factor related to the stability and security of wireless networks. This article uses environmental changes to drive related technologies to deploy wireless sensors. In this article, environmental change-driven means that through certain deployment cost model assumptions and problem descriptions, network deployment is artificially divided into two stages: initial deployment and redeployment. In the deployment phase, by referring to the idea of virtual force, a new sensor deployment algorithm is proposed in the redeployment phase, which can well solve the stability- and security-related issues encountered in agricultural wireless sensor networks. In this algorithm, the moving distance of the mobile receiver and the average coverage of the network are calculated based on the virtual force, the direction, and the number of adjacent clusters. Finally, the algorithm model was simulated in MATLAB, and the feasibility of the algorithm was verified by analyzing the event coverage and the moving distance of nodes. The final simulation results show that the algorithm proposed in this paper can achieve better performance than existing algorithms in terms of average coverage and moving distance.

2013 ◽  
Vol 479-480 ◽  
pp. 763-767
Author(s):  
Kuo Qin Yan ◽  
Shu Ching Wang ◽  
Chin Shan Peng ◽  
Shun Sheng Wang

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous devices which use sensor nodes (SNs) to monitor physical or environmental conditions cooperatively. However, the SN is limited by the energy resource, the memory, the computation, the communication capability, etc. Therefore, the hierarchical clustering topology has been proposed to prolong the lifetime of WSNs by decreasing the energy consumption of SNs. Unfortunately, the network topology is still unstable due to the workload of the cluster managers is overloading. However, in this study, a Centre Clustering Mechanism (CCM) underlying the center-based WSN is proposed to improve the stability of network topology, assists SN within the working area, and takes advantage of message exchange.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2735 ◽  
Author(s):  
Shipeng Wang ◽  
Xiaoping Yang ◽  
Xingqiao Wang ◽  
Zhihong Qian

The random placement of a large-scale sensor network in an outdoor environment often causes low coverage. In order to effectively improve the coverage of a wireless sensor network in the monitoring area, a coverage optimization algorithm for wireless sensor networks with a Virtual Force-Lévy-embedded Grey Wolf Optimization (VFLGWO) algorithm is proposed. The simulation results show that the VFLGWO algorithm has a better optimization effect on the coverage rate, uniformity, and average moving distance of sensor nodes than a wireless sensor network coverage optimization algorithm using Lévy-embedded Grey Wolf Optimizer, Cuckoo Search algorithm, and Chaotic Particle Swarm Optimization. The VFLGWO algorithm has good adaptability with respect to changes of the number of sensor nodes and the size of the monitoring area.


Malware (worm, virus, malicious signals, etc.) propagation in Wireless Sensor Network (WSN) is one of the important concern. The WSN becomes unstable due to presence of malicious signals. Vulnerability of WSN is very high because of the structural constraint of sensor nodes. The attackers target a sensor node of WSN for malware attack. A single infected node starts to spread the malware in the entire network through neighbouring nodes. Therefore, for controlling of malware propagation in WSN a mathematical model is developed. The developed model is based on epidemic theory. The developed model consist of five states such as Susceptible-Infectious-Quarantine-Vaccination-Dead (SIQVD). The quarantine is a method through which to cease the infection spread in WSN. And through vaccination eliminate the malware from the network. The combination of quarantine and vaccination technique improves the network stability. This technique prevents malware propagation in WSN. The basic reproduction number ( ) of the model is deduced. The stability of the network depends on the value of basic reproduction number. It is found that if the value of is less than one the network system exist in malware-fee state, otherwise in endemic state. The equilibrium points of the system is obtained. The effects of quarantine and vaccination has been analyzed on system performance. The theoretical findings are verified by simulation results. Attack Epidemic model Equilibrium point Malware propagation Security Wireless Sensor Network


2016 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Wan Isni Sofiah Wan Din ◽  
Saadiah Yahya ◽  
Mohd Nasir Taib ◽  
Ahmad Ihsan Mohd Yassin ◽  
Razulaimi Razali

Clustering in Wireless Sensor Network (WSN) is one of the methods to minimize the energy usage of sensor network. The design of sensor network itself can prolong the lifetime of network. Cluster head in each cluster is an important part in clustering to ensure the lifetime of each sensor node can be preserved as it acts as an intermediary node between the other sensors. Sensor nodes have the limitation of its battery where the battery is impossible to be replaced once it has been deployed. Thus, this paper presents an improvement of clustering algorithm for two-tier network as we named it as Multi-Tier Algorithm (MAP). For the cluster head selection, fuzzy logic approach has been used which it can minimize the energy usage of sensor nodes hence maximize the network lifetime. MAP clustering approach used in this paper covers the average of 100Mx100M network and involves three parameters that worked together in order to select the cluster head which are residual energy, communication cost and centrality. It is concluded that, MAP dominant the lifetime of WSN compared to LEACH and SEP protocols. For the future work, the stability of this algorithm can be verified in detailed via different data and energy. 


Author(s):  
Chao Wang

Background: It is important to improve the quality of service by using congestion detection technology to find the potential congestion as early as possible in wireless sensor network. Methods: So an improved congestion control scheme based on traffic assignment and reassignment algorithm is proposed for congestion avoidance, detection and mitigation. The congestion area of the network is detected by predicting and setting threshold. When the congestion occurs, sensor nodes can be recovery quickly from congestion by adopting reasonable method of traffic reassignment. And the method can ensure the data in the congestion areas can be transferred to noncongestion areas as soon as possible. Results: The simulation results indicate that the proposed scheme can reduce the number of loss packets, improve the throughput, stabilize the average transmission rate of source node and reduce the end-to-end delay. Conclusion: : So the proposed scheme can enhance the overall performance of the network. Keywords: wireless sensor network; congestion control; congestion detection; congestion mitigation; traffic assignment; traffic reassignment.


2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


Author(s):  
Edison Pignaton de Freitas ◽  
Tales Heimfarth ◽  
Ivayr Farah Netto ◽  
Carlos Eduardo Pereira ◽  
Armando Morado Ferreira ◽  
...  

2014 ◽  
Vol 701-702 ◽  
pp. 1025-1028
Author(s):  
Yu Zhu Liang ◽  
Meng Jiao Wang ◽  
Yong Zhen Li

Clustering the sensor nodes and choosing the way for routing the data are two key elements that would affect the performance of a wireless sensor network (WSN). In this paper, a novel clustering method is proposed and a simple two-hop routing model is adopted for optimizing the network layer of the WSN. New protocol is characterized by simplicity and efficiency (SE). During the clustering stage, no information needs to be shared among the nodes and the position information is not required. Through adjustment of two parameters in SE, the network on any scale (varies from the area and the number of nodes) could obtain decent performance. This work also puts forward a new standard for the evaluation of the network performance—the uniformity of the nodes' death—which is a complement to merely taking the system lifetime into consideration. The combination of these two aspects provides a more comprehensive guideline for designing the clustering or routing protocols in WSN.


2013 ◽  
Vol 846-847 ◽  
pp. 442-445
Author(s):  
Chun Lin He

The fault diagnosis technology have emerged and developed rapidly with the development of wireless sensor networks and requirements of applications improve. This paper describes two commonly used sensor network fault modeling. What is more, in order to solve this problem that sensor nodes are vulnerable and therefore produce wrong data, the paper proposes a distributed fault detecting algorithm based on spatio-temporal correlation among data of adjacent nodes. The simulation experiment shows that the algorithm can efficiently detect errors in the network and very few errors are introduced.


2011 ◽  
Vol 57 (3) ◽  
pp. 341-346 ◽  
Author(s):  
Safdar Khan ◽  
Boubaker Daachi ◽  
Karim Djouani

Overcoming Localization Errors due to Node Power Drooping in a Wireless Sensor NetworkReceived Signal Strength Indication (RSSI) plays a vital role in the range-free localization of sensor nodes in a wireless sensor network and a good amount of research has been made in this regard. One important factor is the battery voltage of the nodes (i.e., the MICAz sensors) which is not taken into account in the existing literature. As battery voltage level performs an indispensable role for the position estimation of sensor nodes through anchor nodes therefore, in this paper, we take into a account this crucial factor and propose an algorithm that overcomes the problem of decaying battery. We show the results, in terms of more precise localization of sensor nodes through simulation. This work is an extension to [1] and now we also use neural network to overcome the localization errors generated due to gradual battery voltage drooping.


Sign in / Sign up

Export Citation Format

Share Document